894 resultados para Nucleic Acid Conformation
Resumo:
Previous molecular mechanics calculations suggest that strands of peptide nucleic acids (PNAs) and complementary oligonucleotides form antiparallel duplexes stabilized by interresidue hydrogen bonds. In the computed structures, the amide carbonyl oxygen nearest the nucleobase (O7') forms an interresidue hydrogen bond with the backbone amide proton of the following residue, (n + 1)H1'. Of the 10 published two dimensional 1H NMR structures of a hexameric PNA.RNA heteroduplex. PNA(GAACTC).r(GAGUUC), 9 exhibit two to five potential interresidue hydrogen bonds. In our minimized average structure, created from the coordinates of these 10 NMR structures, three of the five possible interresidue hydrogen bond sites within the PNA backbone display the carbonyl oxygen (O7') and the amide proton (n + 1)H1' distances and N1'-H1'-(n - 1)O7' angles optimal for hydrogen bond formation. The finding of these interresidue hydrogen bonds supports the results of our previous molecular mechanics calculations.
Resumo:
Polyamide ("peptide") nucleic acids (PNAs) are molecules with antigene and antisense effects that may prove to be effective neuropharmaceuticals if these molecules are enabled to undergo transport through the brain capillary endothelial wall, which makes up the blood-brain barrier in vivo. The model PNA used in the present studies is an 18-mer that is antisense to the rev gene of human immunodeficiency virus type 1 and is biotinylated at the amino terminus and iodinated at a tyrosine residue near the carboxyl terminus. The biotinylated PNA was linked to a conjugate of streptavidin (SA) and the OX26 murine monoclonal antibody to the rat transferrin receptor. The blood-brain barrier is endowed with high transferrin receptor concentrations, enabling the OX26-SA conjugate to deliver the biotinylated PNA to the brain. Although the brain uptake of the free PNA was negligible following intravenous administration, the brain uptake of the PNA was increased at least 28-fold when the PNA was bound to the OX26-SA vector. The brain uptake of the PNA bound to the OX26-SA vector was 0.1% of the injected dose per gram of brain at 60 min after an intravenous injection, approximating the brain uptake of intravenously injected morphine. The PNA bound to the OX26-SA vector retained the ability to bind to synthetic rev mRNA as shown by RNase protection assays. In summary, the present studies show that while the transport of PNAs across the blood-brain barrier is negligible, delivery of these potential neuropharmaceutical drugs to the brain may be achieved by coupling them to vector-mediated peptide-drug delivery systems.
Resumo:
The murine p53 protein contains two nucleic acid-binding sites, a sequence-specific DNA-binding region localized between amino acid residues 102-290 and a nucleic acid-binding site without sequence specificity that has been localized to residues 364-390. Alternative splicing of mRNA generates two forms of this p53 protein. The normal, or majority, splice form (NSp53) retains its carboxyl-terminal sequence-nonspecific nucleic acid-binding site, which can negatively regulate the sequence-specific DNA-binding site. The alternative splice form of p53 (ASp53) replaces amino acid residues 364-390 with 17 different amino acids. This protein fails to bind nucleic acids nonspecifically and is constitutive for sequence-specific DNA binding. Thus, the binding of nucleic acids at the carboxyl terminus regulates sequence-specific DNA binding by p53. The implications of these findings for the activation of p53 transcriptional activity following DNA damage are discussed.
Resumo:
DNA-strand exchange promoted by Escherichia coli RecA protein normally requires the presence of ATP and is accompanied by ATP hydrolysis, thereby implying a need for ATP hydrolysis. Previously, ATP hydrolysis was shown not to be required; here we demonstrate furthermore that a nucleoside triphosphate cofactor is not required for DNA-strand exchange. A gratuitous allosteric effector consisting of the noncovalent complex of ADP and aluminum fluoride, ADP.AIF4-, can both induce the high-affinity DNA-binding state of RecA protein and support the homologous pairing and exchange of up to 800-900 bp of DNA. These results demonstrate that induction of the functionally active, high-affinity DNA-binding state of RecA protein is needed for RecA protein-promoted DNA-strand exchange and that there is no requirement for a high-energy nucleotide cofactor for the exchange of DNA strands. Consequently, the free energy needed to activate the DNA substrates for DNA-strand exchange is not derived from ATP hydrolysis. Instead, the needed free energy is derived from ligand binding and is transduced to the DNA via the associated ligand-induced structural transitions of the RecA protein-DNA complex; ATP hydrolysis simply destroys the effector ligand. This concept has general applicability to the mechanism of energy transduction by proteins.
Resumo:
To elucidate the mechanism of recognition of double-stranded DNA (dsDNA) by homopyrimidine polyamide ("peptide") nucleic acid (PNA) leading to the strand-displacement, the kinetics of the sequence-specific PNA/DNA binding have been studied. The binding was monitored with time by the gel retardation and nuclease S1 cleavage assays. The experimental kinetic curves obey pseudo-first-order kinetics and the dependence of the pseudo-first-order rate constant, kps, on PNA concentration, P, obeys a power law kps approximately P gamma with 2 < gamma < 3. The kps values for binding of decamer PNA to dsDNA target sites with one mismatch are hundreds of times slower than for the correct site. A detailed kinetic scheme for PNA/DNA binding is proposed that includes two major steps of the reaction of strand invasion: (i) a transient partial opening of the PNA binding site on dsDNA and incorporation of one PNA molecule with the formation of an intermediate PNA/DNA duplex and (ii) formation of a very stable PNA2/DNA triplex. A simple theoretical treatment of the proposed kinetic scheme is performed. The interpretation of our experimental data in the framework of the proposed kinetic scheme leads to the following conclusions. The sequence specificity of the recognition is essentially provided at the "search" step of the process, which consists in the highly reversible transient formation of duplex between one PNA molecule and the complementary strand of duplex DNA while the other DNA strand is displaced. This search step is followed by virtually irreversible "locking" step via PNA2/DNA triplex formation. The proposed mechanism explains how the binding of homopyrimidine PNA to dsDNA meets two apparently mutually contradictory features: high sequence specificity of binding and remarkable stability of both correct and mismatched PNA/DNA complexes.
Resumo:
In vertebrate species, the innate immune system down-regulates protein translation in response to viral infection through the action of the double-stranded RNA (dsRNA)-activated protein kinase (PKR). In some teleost species another protein kinase, Z-DNA-dependent protein kinase (PKZ), plays a similar role but instead of dsRNA binding domains, PKZ has Zα domains. These domains recognize the left-handed conformer of dsDNA and dsRNA known as Z-DNA/Z-RNA. Cyprinid herpesvirus 3 infects common and koi carp, which have PKZ, and encodes the ORF112 protein that itself bears a Zα domain, a putative competitive inhibitor of PKZ. Here we present the crystal structure of ORF112-Zα in complex with an 18-bp CpG DNA repeat, at 1.5 Å. We demonstrate that the bound DNA is in the left-handed conformation and identify key interactions for the specificity of ORF112. Localization of ORF112 protein in stress granules induced in Cyprinid herpesvirus 3-infected fish cells suggests a functional behavior similar to that of Zα domains of the interferon-regulated, nucleic acid surveillance proteins ADAR1 and DAI.
Resumo:
Tricyclo-DNA (tcDNA) is a sugar-modified analogue of DNA currently tested for the treatment of Duchenne muscular dystrophy in an antisense approach. Tandem mass spectrometry plays a key role in modern medical diagnostics and has become a widespread technique for the structure elucidation and quantification of antisense oligonucleotides. Herein, mechanistic aspects of the fragmentation of tcDNA are discussed, which lay the basis for reliable sequencing and quantification of the antisense oligonucleotide. Excellent selectivity of tcDNA for complementary RNA is demonstrated in direct competition experiments. Moreover, the kinetic stability and fragmentation pattern of matched and mismatched tcDNA heteroduplexes were investigated and compared with non-modified DNA and RNA duplexes. Although the separation of the constituting strands is the entropy-favored fragmentation pathway of all nucleic acid duplexes, it was found to be only a minor pathway of tcDNA duplexes. The modified hybrid duplexes preferentially undergo neutral base loss and backbone cleavage. This difference is due to the low activation entropy for the strand dissociation of modified duplexes that arises from the conformational constraint of the tc-sugar-moiety. The low activation entropy results in a relatively high free activation enthalpy for the dissociation comparable to the free activation enthalpy of the alternative reaction pathway, the release of a nucleobase. The gas-phase behavior of tcDNA duplexes illustrates the impact of the activation entropy on the fragmentation kinetics and suggests that tandem mass spectrometric experiments are not suited to determine the relative stability of different types of nucleic acid duplexes.
Resumo:
Medical microbiology and virology laboratories use nucleic acid tests (NAT) to detect genomic material of infectious organisms in clinical samples. Laboratories choose to perform assembled (or in-house) NAT if commercial assays are not available or if assembled NAT are more economical or accurate. One reason commercial assays are more expensive is because extensive validation is necessary before the kit is marketed, as manufacturers must accept liability for the performance of their assays, assuming their instructions are followed. On the other hand, it is a particular laboratory's responsibility to validate an assembled NAT prior to using it for testing and reporting results on human samples. There are few published guidelines for the validation of assembled NAT. One procedure that laboratories can use to establish a validation process for an assay is detailed in this document. Before validating a method, laboratories must optimise it and then document the protocol. All instruments must be calibrated and maintained throughout the testing process. The validation process involves a series of steps including: (i) testing of dilution series of positive samples to determine the limits of detection of the assay and their linearity over concentrations to be measured in quantitative NAT; (ii) establishing the day-to-day variation of the assay's performance; (iii) evaluating the sensitivity and specificity of the assay as far as practicable, along with the extent of cross-reactivity with other genomic material; and (iv) assuring the quality of assembled assays using quality control procedures that monitor the performance of reagent batches before introducing new lots of reagent for testing.
Resumo:
Dendrimers are nonviral vectors that have attracted interest on account of a number of features. They are structurally versatile because their size, shape, and surface charge can be selectively altered. Here we examine the functions of a new family of composite dendrimers that were synthesized with lipidic amino acid cores. These dendrimers are bifunctional because they are characterized by positively charged (lysine) modules for interaction with nucleic acids and neutral lipidic moieties for membrane lipid-bilayer transit. We assessed their structure-function correlations by a combination of molecular and biophysical techniques. Our assessment revealed an unexpected pleitropy of functions subserved by these vectors that included plasmid and oligonucleotide delivery. We also generated a firefly luciferase cell line in which we could modulate luciferase activity by RNA interference. We found that these vectors could also mediate RNA suppression of luciferase expression by delivering double-stranded luciferase transcripts generated in vitro. The structural uniqueness of these lipidic peptide dendrimers coupled with their ease and specificity of assembly and the versatility in their choice of cargo, puts them in a new category of macromolecule carriers. These vectors, therefore, have potential applications as epigenetic modifiers of gene function. (C) 2004 Wiley-Liss, Inc. and the American Pharmacists Association.
Resumo:
Nucleic acid amplification tests (NAATs) for the detection of Neisseria gonorrhoeae became available in the early 1990s. Although offering several advantages over traditional detection methods, N. gonorrhoeae NAATs do have some limitations. These include cost, risk of carryover contamination, inhibition, and inability to provide antibiotic resistance data. In addition, there are sequence-related limitations that are unique to N. gonorrhoeae NAATs. In particular, false-positive results are a major consideration. These primarily stem from the frequent horizontal genetic exchange occurring within the Neisseria genus, leading to commensal Neisseria species acquiring N. gonorrhoeae genes. Furthermore, some N. gonorrhoeae subtypes may lack specific sequences targeted by a particular NAAT. Therefore, NAAT false-negative results because of sequence variation may occur in some gonococcal populations. Overall, the N. gonorrhoeae species continues to present a considerable challenge for molecular diagnostics. The need to evaluate N. gonorrhoeae NAATs before their use in any new patient population and to educate physicians on the limitations of these tests is emphasized in this review.
Resumo:
Background: To investigate factors responsible for muscle loss in cachexia changes in nucleic acid and protein levels have been determined and compared with those induced by a tumour-produced cachectic factor, proteolysis-inducing factor (PIF). Materials and Methods: Mice were transplanted with the MAC16 tumour, while non-tumour bearing mice received PIF (1.5 mg/kg; i.v.) over a 24 h period. Results: There was an exponential decrease in RNA and protein in gastrocnemius muscle with weight loss without an effect on the DNA content. Levels of myosin followed the decrease in total protein, while actin levels remained constant. There was also a significant loss of protein from soleus muscle and spleen, but not from heart, liver and kidney. PIF also produced a significant loss of RNA and protein in spleen and reduced the protein content of soleus muscle. Conclusion: This suggests that PIF may be responsible for changes in protein and RNA content of tissues with the development of cachexia.