987 resultados para Nuclear structure
Resumo:
Results for elastic electron scattering by nuclei, calculated with charge densities of Skyrme forces and covariant effective Lagrangians that accurately describe nuclear ground states, are compared against experiment in stable isotopes. Dirac partial-wave calculations are performed with an adapted version of the ELSEPA package. Motivated by the fact that studies of electron scattering off exotic nuclei are intended in future facilities in the commissioned GSI and RIKEN upgrades, we survey the theoretical predictions from neutron-deficient to neutron-rich isotopes in the tin and calcium isotopic chains. The charge densities of a covariant interaction that describes the low-energy electromagnetic structure of the nucleon within the Lagrangian of the theory are used to this end. The study is restricted to medium- and heavy-mass nuclei because the charge densities are computed in mean-field approach. Because the experimental analysis of scattering data commonly involves parameterized charge densities, as a surrogate exercise for the yet unexplored exotic nuclei, we fit our calculated mean-field densities with Helm model distributions. This procedure turns out to be helpful to study the neutron-number variation of the scattering observables and allows us to identify correlations of potential interest among some of these observables within the isotopic chains.
Resumo:
We have used an axially symmetric deformed Thomas-Fermi model to evaluate the fission barrier of 240Pu as a function of the quadrupole moment Q2 for different values of the angular momentum L and temperature T. The fission stability diagram of this nucleus is investigated.
Resumo:
The distribution of single-particle strength in nuclear matter is calculated for a realistic nucleon-nucleon interaction. The influence of the short-range repulsion and the tensor component of the nuclear force on the spectral functions is to move approximately 13% of the total strength for all single-particle states beyond 100 MeV into the particle domain. This result is related to the abundantly observed quenching phenomena in nuclei which include the reduction of spectroscopic factors observed in (e,ep) reactions and the missing strength in low energy response functions.
Resumo:
We reanalyze the decay mode of Lambda hypernuclei induced by two nucleons modifying previous numerical results and the interpretation of the process. The repercussions of this channel in the ratio of neutron to proton induced Lambda decay is studied in detail in connection with the present experimental data. This leads to ratios that are in greater contradiction with usual one pion exchange models than those deduced before.
Resumo:
Deuteron properties are studied using the one-pion exchange potential truncated at a radius R, with a constant interior potential. The spectrum of bound states and their properties are put in evidence. We discuss the relation of this model to more realistic models of the nucleon-nucleon interaction.
Resumo:
We investigate the "twist" mode (rotation of the upper against the lower hemisphere) of a dilute atomic Fermi gas in a spherical trap. The normal and superfluid phases are considered. The linear response to this external perturbation is calculated within the microscopic Hartree-Fock-Bogoliubov approach. In the normal phase the excitation spectrum is concentrated in a rather narrow peak very close to the trapping frequency. In the superfluid phase the strength starts to be damped and fragmented and the collectivity of the mode is progressively lost when the temperature decreases. In the weak-pairing regime some reminiscence of the collective motion still exists, whereas in the strong-pairing regime the twist mode is completely washed out. The disappearance of the twist mode in the strong-pairing regime with decreasing temperature is interpreted in the framework of the two-fluid model.
Resumo:
Although ab initio calculations of relativistic Brueckner theory lead to large scalar isovector fields in nuclear matter, at present, successful versions of covariant density functional theory neglect the interactions in this channel. A new high-precision density functional DD-MEδ is presented which includes four mesons, σ, ω, δ, and ρ, with density-dependent meson-nucleon couplings. It is based to a large extent on microscopic ab initiocalculations in nuclear matter. Only four of its parameters are determined by adjusting to binding energies and charge radii of finite nuclei. The other parameters, in particular the density dependence of the meson-nucleon vertices, are adjusted to nonrelativistic and relativistic Brueckner calculations of symmetric and asymmetric nuclear matter. The isovector effective mass mp*−mn* derived from relativistic Brueckner theory is used to determine the coupling strength of the δ meson and its density dependence.
Resumo:
By using the scaling method we derive the virial theorem for the relativistic mean field model of nuclei treated in the ThomasFermi approach. The ThomasFermi solutions statisfy the stability condition against scaling. We apply the formalism to study the excitation energy of the breathing mode in finite nuclei with several relativistic parameter sets of common use.
Resumo:
The pion spectrum for charged and neutral pions is investigated in pure neutron matter, by letting the pions interact with a neutron Fermi sea in a self-consistent scheme that renormalizes simultaneously the mesons, considered the source of the interaction, and the nucleons. The possibility of obtaining different kinds of pion condensates is investigated with the result that they cannot be reached even for values of the spin-spin correlation parameter, g', far below the range commonly accepted.