901 resultados para Nonlinear model


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An approximate dynamic programming (ADP)-based suboptimal neurocontroller to obtain desired temperature for a high-speed aerospace vehicle is synthesized in this paper. A I-D distributed parameter model of a fin is developed from basic thermal physics principles. "Snapshot" solutions of the dynamics are generated with a simple dynamic inversion-based feedback controller. Empirical basis functions are designed using the "proper orthogonal decomposition" (POD) technique and the snapshot solutions. A low-order nonlinear lumped parameter system to characterize the infinite dimensional system is obtained by carrying out a Galerkin projection. An ADP-based neurocontroller with a dual heuristic programming (DHP) formulation is obtained with a single-network-adaptive-critic (SNAC) controller for this approximate nonlinear model. Actual control in the original domain is calculated with the same POD basis functions through a reverse mapping. Further contribution of this paper includes development of an online robust neurocontroller to account for unmodeled dynamics and parametric uncertainties inherent in such a complex dynamic system. A neural network (NN) weight update rule that guarantees boundedness of the weights and relaxes the need for persistence of excitation (PE) condition is presented. Simulation studies show that in a fairly extensive but compact domain, any desired temperature profile can be achieved starting from any initial temperature profile. Therefore, the ADP and NN-based controllers appear to have the potential to become controller synthesis tools for nonlinear distributed parameter systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A nonlinear model is developed to numerically simulate dynamic combustion inside a solid rocket motor chamber. Using this model, the phenomena of re-ignition and chuffing are investigated under low-L* conditions. The model consists of two separate submodels (coupled to each other), one for unsteady burning of propellant and the other for unsteady conservation of mass and energy within the chamber. The latter yields instantaneous pressure and temperature within the chamber. The instantaneous burning rate is calculated using a one-dimensional, nonlinear, transient gas-phase model previously developed by the authors. The results presented in this paper show that the model predicts not only the critical L*, but also the various regimes of L*-instabihty. Specifically, the results exhibit (1) amplifying pressure oscillations leading to extinction, and (2) re-ignition after a dormant period following extinction. The re-ignition could be observed only when a radiation heat flux (from the combustion chamber to the propellant surface) was included. Certain high-frequency oscillations, possibly due to intrinsic instability, are observed when the pressure overshoots during re-ignition. At very low values of initial L*, successive cycles of extinction/reignition displaying typical characteristics of chuffing are predicted. Variations of the chuffing frequency and the thickness of propellant burned off during a chuff with L* are found to be qualitatively the same as that reported from experimental observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A energy-insensitive explicit guidance design is proposed in this paper by appending newlydeveloped nonlinear model predictive static programming technique with dynamic inversion, which render a closed form solution of the necessary guidance command update. The closed form nature of the proposed optimal guidance scheme suppressed the computational difficulties, and facilitate realtime solution. The guidance law is successfully verified in a solid motor propelled long range flight vehicle, for which developing an effective guidance law is more difficult as compared to a liquid engine propelled vehicle, mainly because of the absence of thrust cutoff facility. The scheme guides the vehicle appropriately so that it completes the mission within a tight error bound assuming that the starting point of the second stage to be a deterministic point beyond the atmosphere. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in the burnout time

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combining the newly developed nonlinear model predictive static programming technique with null range direction concept, a novel explicit energy-insensitive guidance design method is presented in this paper for long range flight vehicles, which leads to a closed form solution of the necessary guidance command update. Owing to the closed form nature, it does not lead to computational difficulties and the proposed optimal guidance algorithm can be implemented online. The guidance law is verified in a solid motor propelled long range flight vehicle, for which coming up with an effective guidance law is more difficult as compared to a liquid engine propelled vehicle (mainly because of the absence of thrust cutoff facility). Assuming the starting point of the second stage to be a deterministic point beyond the atmosphere, the scheme guides the vehicle properly so that it completes the mission within a tight error bound. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in burnout time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is demonstrated that when tension leg platform (TLP) moves with finite amplitude in waves, the inertia force, the drag force and the buoyancy acting on the platform are nonlinear functions of the response of TLP. The tensions of the tethers are also nonlinear functions of the displacement of TLP. Then the displacement, the velocity and the acceleration of TLP should be taken into account when loads are calculated. In addition, equations of motions should be set up on the instantaneous position. A theoretical model for analyzing the nonlinear behavior of a TLP with finite displacement is developed, in which multifold nonlinearities are taken into account, i.e., finite displacement, coupling of the six degrees of freedom, instantaneous position, instantaneous wet surface, free surface effects and viscous drag force. Based on the theoretical model, the comprehensive nonlinear differential equations are deduced. Then the nonlinear dynamic analysis of ISSC TLP in regular waves is performed in the time domain. The degenerative linear solution of the proposed nonlinear model is verified with existing published one. Furthermore, numerical results are presented, which illustrate that nonlinearities exert a significant influence on the dynamic responses of the TLP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experimental stress-strain data of OFHC copper first under torsion to 13% and then under torsion-tension to about 10% are used to study the characteristics of three elastic-plastic constitutive models: Chaboche's super-positional nonlinear model, Dafalias and Popov's two surface model and Watanabe and Atluri's version of the endochronic model. The three models, originally oriented for infinitesimal deformation, have been extended for finite deformation. The results show (a) the Mises-type yield surface used in the three models brings about significant departure of the predictions from the experimental data; (b) Chaboche's and Dafalias' models are easier than Watanabe and Atluri's model in determining the material parameters in them, and (c) Chaboche's and Watanabe & Atluri's models produce almost the same prediction to the data, while Dafalias' model cannot accurately predict the plastic deformations when a loading path changes in its direction. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

60.00% 60.00%

Publicador:

Resumo:

FEniCS is a collection of software tools for the automated solution of differential equations by finite element methods. In this note, we describe how FEniCS can be used to solve a simple nonlinear model problem with varying levels of automation. At one extreme, FEniCS provides tools for the fully automated and adaptive solution of nonlinear partial differential equations. At the other extreme, FEniCS provides a range of tools that allow the computational scientist to experiment with novel solution algorithms. © 2010 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

New embedded predictive control applications call for more eficient ways of solving quadratic programs (QPs) in order to meet demanding real-time, power and cost requirements. A single precision QP-on-a-chip controller is proposed, implemented in afield-programmable gate array (FPGA) with an iterative linear solver at its core. A novel offline scaling procedure is introduced to aid the convergence of the reduced precision solver. The feasibility of the proposed approach is demonstrated with a real-time hardware-in-the-loop (HIL) experimental setup where an ML605 FPGA board controls a nonlinear model of a Boeing 747 aircraft running on a desktop PC through an Ethernet link. Simulations show that the quality of the closed-loop control and accuracy of individual solutions is competitive with a conventional double precision controller solving linear systems using a Riccati recursion. © 2012 IFAC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that file linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations eta(max)(0) are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on eta(max)(0) are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the eta(max)(0) near-linearly varies with the wave amplitudes of the surface waves, and the eta(max)(0) has significant dependences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, aid these differences are significantly affected by The wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optimization of full-scale biogas plant operation is of great importance to make biomass a competitive source of renewable energy. The implementation of innovative control and optimization algorithms, such as Nonlinear Model Predictive Control, requires an online estimation of operating states of biogas plants. This state estimation allows for optimal control and operating decisions according to the actual state of a plant. In this paper such a state estimator is developed using a calibrated simulation model of a full-scale biogas plant, which is based on the Anaerobic Digestion Model No.1. The use of advanced pattern recognition methods shows that model states can be predicted from basic online measurements such as biogas production, CH4 and CO2 content in the biogas, pH value and substrate feed volume of known substrates. The machine learning methods used are trained and evaluated using synthetic data created with the biogas plant model simulating over a wide range of possible plant operating regions. Results show that the operating state vector of the modelled anaerobic digestion process can be predicted with an overall accuracy of about 90%. This facilitates the application of state-based optimization and control algorithms on full-scale biogas plants and therefore fosters the production of eco-friendly energy from biomass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rehabilitation is becoming more and more usual in the construction sector in Portugal. The introduction of newer construction materials and technical know-how of integrating different materials for achieving desired engineering goals is an important step to the development of the sector. Wood industry is also getting more and more adapted to composite technologies with the introduction of the so called “highly engineered wood products” and with the use of modification treatments. This work is an attempt to explain the viability of using stainless steel and glass fibre reinforced polymer (GFRP) as reinforcements in wood beams. This thesis specifically focuses on the flexural behaviour of Portuguese Pine unmodified and modified wood beams. Two types of modification were used: 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU) resin and amid wax. The behaviour of the material was analysed with a nonlinear model. The latter model simulates the behaviour of the reinforced wood beams under flexural loading. Small-scale beams (1:15) were experimented in flexural bending and the experimental results obtained were compared with the analytical model results. The experiments confirm the viability of the reinforcing schemes and the working procedures. Experimental results showed fair agreement with the nonlinear model. A strength increase between 15% and 80% was achieved. Stiffness increased by 40% to 50% in beams reinforced with steel but no significant increase was achieved with the glass fibre reinforcement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As centrais termoelétricas convencionais convertem apenas parte do combustível consumido na produção de energia elétrica, sendo que outra parte resulta em perdas sob a forma de calor. Neste sentido, surgiram as unidades de cogeração, ou Combined Heat and Power (CHP), que permitem reaproveitar a energia dissipada sob a forma de energia térmica e disponibilizá-la, em conjunto com a energia elétrica gerada, para consumo doméstico ou industrial, tornando-as mais eficientes que as unidades convencionais Os custos de produção de energia elétrica e de calor das unidades CHP são representados por uma função não-linear e apresentam uma região de operação admissível que pode ser convexa ou não-convexa, dependendo das caraterísticas de cada unidade. Por estas razões, a modelação de unidades CHP no âmbito do escalonamento de geradores elétricos (na literatura inglesa Unit Commitment Problem (UCP)) tem especial relevância para as empresas que possuem, também, este tipo de unidades. Estas empresas têm como objetivo definir, entre as unidades CHP e as unidades que apenas geram energia elétrica ou calor, quais devem ser ligadas e os respetivos níveis de produção para satisfazer a procura de energia elétrica e de calor a um custo mínimo. Neste documento são propostos dois modelos de programação inteira mista para o UCP com inclusão de unidades de cogeração: um modelo não-linear que inclui a função real de custo de produção das unidades CHP e um modelo que propõe uma linearização da referida função baseada na combinação convexa de um número pré-definido de pontos extremos. Em ambos os modelos a região de operação admissível não-convexa é modelada através da divisão desta àrea em duas àreas convexas distintas. Testes computacionais efetuados com ambos os modelos para várias instâncias permitiram verificar a eficiência do modelo linear proposto. Este modelo permitiu obter as soluções ótimas do modelo não-linear com tempos computationais significativamente menores. Para além disso, ambos os modelos foram testados com e sem a inclusão de restrições de tomada e deslastre de carga, permitindo concluir que este tipo de restrições aumenta a complexidade do problema sendo que o tempo computacional exigido para a resolução do mesmo cresce significativamente.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper studies Tobin's proposition that inflation "greases" the wheels of the labor market. The analysis is carried out using a simple dynamic stochastic general equilibrium model with asymmetric wage adjustment costs. Optimal inflation is determined by a benevolent government that maximizes the households' welfare. The Simulated Method of Moments is used to estimate the nonlinear model based on its second-order approximation. Econometric results indicate that nominal wages are downwardly rigid and that the optimal level of grease inflation for the U.S. economy is about 1.2 percent per year, with a 95% confidence interval ranging from 0.2 to 1.6 percent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Doctorat réalisé en cotutelle entre l'Université de Montréal et l'Université Paul Sabatier-Toulouse III

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An investigation is made of the impact of a full linearized physical (moist) parameterization package on extratropical singular vectors (SVs) using the ECMWF integrated forecasting system (IFS). Comparison is made for one particular period with a dry physical package including only vertical diffusion and surface drag. The crucial extra ingredient in the full package is found to be the large-scale latent heat release. Consistent with basic theory, its inclusion results in a shift to smaller horizontal scales and enhanced growth for the SVs. Whereas, for the dry SVs, T42 resolution is sufficient, the moist SVs require T63 to resolve their structure and growth. A 24-h optimization time appears to be appropriate for the moist SVs because of the larger growth of moist SVs compared with dry SVs. Like dry SVs, moist SVs tend to occur in regions of high baroclinicity, but their location is also influenced by the availability of moisture. The most rapidly growing SVs appear to enhance or reduce large-scale rain in regions ahead of major cold fronts. The enhancement occurs in and ahead of a cyclonic perturbation and the reduction in and ahead of an anticyclonic perturbation. Most of the moist SVs for this situation are slightly modified versions of the dry SVs. However, some occur in new locations and have particularly confined structures. The most rapidly growing SV is shown to exhibit quite linear behavior in the nonlinear model as it grows from 0.5 to 12 hPa in 1 day. For 5 times this amplitude the structure is similar but the growth is about half as the perturbation damps a potential vorticity (PV) trough or produces a cutoff, depending on its sign.