921 resultados para Nonlinear dynamic models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The identification of nonlinear dynamic systems using linear-in-the-parameters models is studied. A fast recursive algorithm (FRA) is proposed to select both the model structure and to estimate the model parameters. Unlike orthogonal least squares (OLS) method, FRA solves the least-squares problem recursively over the model order without requiring matrix decomposition. The computational complexity of both algorithms is analyzed, along with their numerical stability. The new method is shown to require much less computational effort and is also numerically more stable than OLS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A forward and backward least angle regression (LAR) algorithm is proposed to construct the nonlinear autoregressive model with exogenous inputs (NARX) that is widely used to describe a large class of nonlinear dynamic systems. The main objective of this paper is to improve model sparsity and generalization performance of the original forward LAR algorithm. This is achieved by introducing a replacement scheme using an additional backward LAR stage. The backward stage replaces insignificant model terms selected by forward LAR with more significant ones, leading to an improved model in terms of the model compactness and performance. A numerical example to construct four types of NARX models, namely polynomials, radial basis function (RBF) networks, neuro fuzzy and wavelet networks, is presented to illustrate the effectiveness of the proposed technique in comparison with some popular methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A real-time parameter estimator for the climate discrete-time dynamic models of a greenhouse located at the North of Portugal are presented. The experiments showed that the second order models identified for the air temperature and humidity achieve a close agreement between simulated and experimantal data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a greenhouse located at UTAD-University, the methods used to estimate in real-time the parameters of the inside air temperature model will be described. The structure and the parameters of the climate discrete-time dynamic model were previously identified using data acquired during two different periods of the year.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper climate discrete-time dynamic models for the inside air temperature of a soilless greenhouse are identified, using data acquired during two different periods of the year. These models employ data from air temperature and relative humidity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasingly complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I) reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develops conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to building simulation scientists, initiates a dialogue and builds bridges between scientists and engineers, and stimulates future research about a wide range of issues on building environmental systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current mathematical models in building research have been limited in most studies to linear dynamics systems. A literature review of past studies investigating chaos theory approaches in building simulation models suggests that as a basis chaos model is valid and can handle the increasing complexity of building systems that have dynamic interactions among all the distributed and hierarchical systems on the one hand, and the environment and occupants on the other. The review also identifies the paucity of literature and the need for a suitable methodology of linking chaos theory to mathematical models in building design and management studies. This study is broadly divided into two parts and presented in two companion papers. Part (I), published in the previous issue, reviews the current state of the chaos theory models as a starting point for establishing theories that can be effectively applied to building simulation models. Part (II) develop conceptual frameworks that approach current model methodologies from the theoretical perspective provided by chaos theory, with a focus on the key concepts and their potential to help to better understand the nonlinear dynamic nature of built environment systems. Case studies are also presented which demonstrate the potential usefulness of chaos theory driven models in a wide variety of leading areas of building research. This study distills the fundamental properties and the most relevant characteristics of chaos theory essential to (1) building simulation scientists and designers (2) initiating a dialogue between scientists and engineers, and (3) stimulating future research on a wide range of issues involved in designing and managing building environmental systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled � ight. The construction of a robust closed-loop control that extends the stable and decoupled � ight envelope as far as possible is pursued. For the study of these systems, nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and to investigate control effects on dynamic behavior. Linear feedback control designs constructed by eigenstructure assignment methods at a � xed � ight condition are investigated for a simple nonlinear aircraft model. Bifurcation analysis, in conjunction with linear control design methods, is shown to aid control law design for the nonlinear system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aircraft systems are highly nonlinear and time varying. High-performance aircraft at high angles of incidence experience undesired coupling of the lateral and longitudinal variables, resulting in departure from normal controlled flight. The aim of this work is to construct a robust closed-loop control that optimally extends the stable and decoupled flight envelope. For the study of these systems nonlinear analysis methods are needed. Previously, bifurcation techniques have been used mainly to analyze open-loop nonlinear aircraft models and investigate control effects on dynamic behavior. In this work linear feedback control designs calculated by eigenstructure assignment methods are investigated for a simple aircraft model at a fixed flight condition. Bifurcation analysis in conjunction with linear control design methods is shown to aid control law design for the nonlinear system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we propose and analyze nonlinear elliptical models for longitudinal data, which represent an alternative to gaussian models in the cases of heavy tails, for instance. The elliptical distributions may help to control the influence of the observations in the parameter estimates by naturally attributing different weights for each case. We consider random effects to introduce the within-group correlation and work with the marginal model without requiring numerical integration. An iterative algorithm to obtain maximum likelihood estimates for the parameters is presented, as well as diagnostic results based on residual distances and local influence [Cook, D., 1986. Assessment of local influence. journal of the Royal Statistical Society - Series B 48 (2), 133-169; Cook D., 1987. Influence assessment. journal of Applied Statistics 14 (2),117-131; Escobar, L.A., Meeker, W.Q., 1992, Assessing influence in regression analysis with censored data, Biometrics 48, 507-528]. As numerical illustration, we apply the obtained results to a kinetics longitudinal data set presented in [Vonesh, E.F., Carter, R.L., 1992. Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics 48, 1-17], which was analyzed under the assumption of normality. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear dynamic response and a nonlinear control method of a particular portal frame foundation for an unbalanced rotating machine with limited power (non-ideal motor) are examined. Numerical simulations are performed for a set of control parameters (depending on the voltage of the motor) related to the static and dynamic characteristics of the motor. The interaction of the structure with the excitation source may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. A mathematical model having two degrees of freedom simplifies the non-ideal system. The study of controlling steady-state vibrations of the non-ideal system is based on the saturation phenomenon due to internal resonance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a system involving a flexible rod subjected to magnetic forces that can bend it while simultaneously subjected to external excitations produces complex and nonlinear dynamic behavior, which may present different types of solutions for its different movement-related responses. This fact motivated us to analyze such a mechanical system based on modeling and numerical simulation involving both, integer order calculus (IOC) and fractional order calculus (FOC) approaches. The time responses, pseudo phase portraits and Fourier spectra have been presented. The results obtained can be used as a source for conduct experiments in order to obtain more realistic and more accurate results about fractional-order models when compared to the integer-order models. © Published under licence by IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The issue of assessing variance components is essential in deciding on the inclusion of random effects in the context of mixed models. In this work we discuss this problem by supposing nonlinear elliptical models for correlated data by using the score-type test proposed in Silvapulle and Silvapulle (1995). Being asymptotically equivalent to the likelihood ratio test and only requiring the estimation under the null hypothesis, this test provides a fairly easy computable alternative for assessing one-sided hypotheses in the context of the marginal model. Taking into account the possible non-normal distribution, we assume that the joint distribution of the response variable and the random effects lies in the elliptical class, which includes light-tailed and heavy-tailed distributions such as Student-t, power exponential, logistic, generalized Student-t, generalized logistic, contaminated normal, and the normal itself, among others. We compare the sensitivity of the score-type test under normal, Student-t and power exponential models for the kinetics data set discussed in Vonesh and Carter (1992) and fitted using the model presented in Russo et al. (2009). Also, a simulation study is performed to analyze the consequences of the kurtosis misspecification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model based calibration has gained popularity in recent years as a method to optimize increasingly complex engine systems. However virtually all model based techniques are applied to steady state calibration. Transient calibration is by and large an emerging technology. An important piece of any transient calibration process is the ability to constrain the optimizer to treat the problem as a dynamic one and not as a quasi-static process. The optimized air-handling parameters corresponding to any instant of time must be achievable in a transient sense; this in turn depends on the trajectory of the same parameters over previous time instances. In this work dynamic constraint models have been proposed to translate commanded to actually achieved air-handling parameters. These models enable the optimization to be realistic in a transient sense. The air handling system has been treated as a linear second order system with PD control. Parameters for this second order system have been extracted from real transient data. The model has been shown to be the best choice relative to a list of appropriate candidates such as neural networks and first order models. The selected second order model was used in conjunction with transient emission models to predict emissions over the FTP cycle. It has been shown that emission predictions based on air-handing parameters predicted by the dynamic constraint model do not differ significantly from corresponding emissions based on measured air-handling parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most statistical analysis, theory and practice, is concerned with static models; models with a proposed set of parameters whose values are fixed across observational units. Static models implicitly assume that the quantified relationships remain the same across the design space of the data. While this is reasonable under many circumstances this can be a dangerous assumption when dealing with sequentially ordered data. The mere passage of time always brings fresh considerations and the interrelationships among parameters, or subsets of parameters, may need to be continually revised. ^ When data are gathered sequentially dynamic interim monitoring may be useful as new subject-specific parameters are introduced with each new observational unit. Sequential imputation via dynamic hierarchical models is an efficient strategy for handling missing data and analyzing longitudinal studies. Dynamic conditional independence models offers a flexible framework that exploits the Bayesian updating scheme for capturing the evolution of both the population and individual effects over time. While static models often describe aggregate information well they often do not reflect conflicts in the information at the individual level. Dynamic models prove advantageous over static models in capturing both individual and aggregate trends. Computations for such models can be carried out via the Gibbs sampler. An application using a small sample repeated measures normally distributed growth curve data is presented. ^