997 resultados para Nonlinear Eigenvalue Problems
Resumo:
The paper studies a generalisation of the dynamic Leontief input-output model. The standard dynamic Leontief model will be extended with the balance equation of renewable resources. The renewable stocks will increase regenerating and decrease exploiting primary natural resources. In this study the controllability of this extended model is examined by taking the consumption as the control parameter. Assuming balanced growth for both consumption and production, we investigate the exhaustion of renewable resources in dependence on the balanced growth rate and on the rate of natural regeneration. In doing so, classic results from control theory and on eigenvalue problems in linear algebra are applied.
Resumo:
The paper studies a generalisation of the dynamic Leontief input-output model. The standard dynamic Leontief model will be extended with the balance equation of renewable resources. The renewable stocks will increase regenerating and decrease exploiting primary natural resources. In this study the controllability of this extended model is examined by taking the consumption as the control parameter. Assuming balanced growth for both consumption and production, we investigate the exhaustion of renewable resources in dependence on the balanced growth rate and on the rate of natural regeneration. In doing so, classic results from control theory and on eigenvalue problems in linear algebra are applied.
Resumo:
The use of the Design by Analysis (DBA) route is a modern trend in pressure vessel and piping international codes in mechanical engineering. However, to apply the DBA to structures under variable mechanical and thermal loads, it is necessary to assure that the plastic collapse modes, alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be precluded. The tool available to achieve this target is the shakedown theory. Unfortunately, the practical numerical applications of the shakedown theory result in very large nonlinear optimization problems with nonlinear constraints. Precise, robust and efficient algorithms and finite elements to solve this problem in finite dimension has been a more recent achievements. However, to solve real problems in an industrial level, it is necessary also to consider more realistic material properties as well as to accomplish 3D analysis. Limited kinematic hardening, is a typical property of the usual steels and it should be considered in realistic applications. In this paper, a new finite element with internal thermodynamical variables to model kinematic hardening materials is developed and tested. This element is a mixed ten nodes tetrahedron and through an appropriate change of variables is possible to embed it in a shakedown analysis software developed by Zouain and co-workers for elastic ideally-plastic materials, and then use it to perform 3D shakedown analysis in cases with limited kinematic hardening materials
Resumo:
The use of the Design by Analysis concept is a trend in modern pressure vessel and piping calculations. DBA flexibility allow us to deal with unexpected configurations detected at in-service inspections. It is also important, in life extension calculations, when deviations of the original standard hypotesis adopted initially in Design by Formula, can happen. To apply the DBA to structures under variable mechanic and thermal loads, it is necessary that, alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case), be precluded. These are two basic failure modes considered by ASME or European Standards in DBA. The shakedown theory is the tool available to achieve this goal. In order to apply it, is necessary only the range of the variable loads and the material properties. Precise, robust and efficient algorithms to solve the very large nonlinear optimization problems generated in numerical applications of the shakedown theory is a recent achievement. Zouain and co-workers developed one of these algorithms for elastic ideally-plastic materials. But, it is necessary to consider more realistic material properties in real practical applications. This paper shows an enhancement of this algorithm to dealing with limited kinematic hardening, a typical property of the usual steels. This is done using internal thermodynamic variables. A discrete algorithm is obtained using a plane stress, mixed finite element, with internal variable. An example, a beam encased in an end, under constant axial force and variable moment is presented to show the importance of considering the limited kinematic hardening in a shakedown analysis.
Resumo:
In design or safety assessment of mechanical structures, the use of the Design by Analysis (DBA) route is a modern trend. However, for making possible to apply DBA to structures under variable loads, two basic failure modes considered by ASME or European Standards must be precluded. Those modes are the alternate plasticity and incremental collapse (with instantaneous plastic collapse as a particular case). Shakedown theory is a tool that permit us to assure that those kinds of failures will be avoided. However, in practical applications, very large nonlinear optimization problems are generated. Due to this facts, only in recent years have been possible to obtain algorithms sufficiently accurate, robust and efficient, for dealing with this class of problems. In this paper, one of these shakedown algorithms, developed for dealing with elastic ideally-plastic structures, is enhanced to include limited kinematic hardening, a more realistic material behavior. This is done in the continuous model by using internal thermodynamic variables. A corresponding discrete model is obtained using an axisymmetric mixed finite element with an internal variable. A thick wall sphere, under variable thermal and pressure loads, is used in an example to show the importance of considering the limited kinematic hardening in the shakedown calculations
Resumo:
This work develops a method for solving ordinary differential equations, that is, initial-value problems, with solutions approximated by using Legendre's polynomials. An iterative procedure for the adjustment of the polynomial coefficients is developed, based on the genetic algorithm. This procedure is applied to several examples providing comparisons between its results and the best polynomial fitting when numerical solutions by the traditional Runge-Kutta or Adams methods are available. The resulting algorithm provides reliable solutions even if the numerical solutions are not available, that is, when the mass matrix is singular or the equation produces unstable running processes.
Resumo:
A modified formula for the integral transform of a nonlinear function is proposed for a class of nonlinear boundary value problems. The technique presented in this paper results in analytical solutions. Iterations and initial guess, which are needed in other techniques, are not required in this novel technique. The analytical solutions are found to agree surprisingly well with the numerically exact solutions for two examples of power law reaction and Langmuir-Hinshelwood reaction in a catalyst pellet.
Resumo:
We study the continuous problem y"=f(x,y,y'), xc[0,1], 0=G((y(0),y(1)),(y'(0), y'(1))), and its discrete approximation (y(k+1)-2y(k)+y(k-1))/h(2) =f(t(k), y(k), v(k)), k = 1,..., n-1, 0 = G((y(0), y(n)), (v(1), v(n))), where f and G = (g(0), g(1)) are continuous and fully nonlinear, h = 1/n, v(k) = (y(k) - y(k-1))/h, for k =1,..., n, and t(k) = kh, for k = 0,...,n. We assume there exist strict lower and strict upper solutions and impose additional conditions on f and G which are known to yield a priori bounds on, and to guarantee the existence of solutions of the continuous problem. We show that the discrete approximation also has solutions which approximate solutions of the continuous problem and converge to the solution of the continuous problem when it is unique, as the grid size goes to 0. Homotopy methods can be used to compute the solution of the discrete approximation. Our results were motivated by those of Gaines.
Resumo:
In this work it is presented a systematic procedure for constructing the solution of a large class of nonlinear conduction heat transfer problems through the minimization of quadratic functionals like the ones usually employed for linear descriptions. The proposed procedure gives rise to an efficient and easy way for carrying out numerical simulations of nonlinear heat transfer problems by means of finite elements. To illustrate the procedure a particular problem is simulated by means of a finite element approximation.
Resumo:
The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an “inner” direct or iterative process. In comparison with Newton’s method and its variants, the algorithm is attractive because it does not require the evaluation of second-order derivatives in the Hessian of the objective function. In practice the exact Gauss–Newton method is too expensive to apply operationally in meteorological forecasting, and various approximations are made in order to reduce computational costs and to solve the problems in real time. Here we investigate the effects on the convergence of the Gauss–Newton method of two types of approximation used commonly in data assimilation. First, we examine “truncated” Gauss–Newton methods where the inner linear least squares problem is not solved exactly, and second, we examine “perturbed” Gauss–Newton methods where the true linearized inner problem is approximated by a simplified, or perturbed, linear least squares problem. We give conditions ensuring that the truncated and perturbed Gauss–Newton methods converge and also derive rates of convergence for the iterations. The results are illustrated by a simple numerical example. A practical application to the problem of data assimilation in a typical meteorological system is presented.
Resumo:
A new spectral method for solving initial boundary value problems for linear and integrable nonlinear partial differential equations in two independent variables is applied to the nonlinear Schrödinger equation and to its linearized version in the domain {x≥l(t), t≥0}. We show that there exist two cases: (a) if l″(t)<0, then the solution of the linear or nonlinear equations can be obtained by solving the respective scalar or matrix Riemann-Hilbert problem, which is defined on a time-dependent contour; (b) if l″(t)>0, then the Riemann-Hilbert problem is replaced by a respective scalar or matrix problem on a time-independent domain. In both cases, the solution is expressed in a spectrally decomposed form.
Resumo:
This paper illustrates how nonlinear programming and simulation tools, which are available in packages such as MATLAB and SIMULINK, can easily be used to solve optimal control problems with state- and/or input-dependent inequality constraints. The method presented is illustrated with a model of a single-link manipulator. The method is suitable to be taught to advanced undergraduate and Master's level students in control engineering.
Resumo:
In this review I summarise some of the most significant advances of the last decade in the analysis and solution of boundary value problems for integrable partial differential equations in two independent variables. These equations arise widely in mathematical physics, and in order to model realistic applications, it is essential to consider bounded domain and inhomogeneous boundary conditions. I focus specifically on a general and widely applicable approach, usually referred to as the Unified Transform or Fokas Transform, that provides a substantial generalisation of the classical Inverse Scattering Transform. This approach preserves the conceptual efficiency and aesthetic appeal of the more classical transform approaches, but presents a distinctive and important difference. While the Inverse Scattering Transform follows the "separation of variables" philosophy, albeit in a nonlinear setting, the Unified Transform is a based on the idea of synthesis, rather than separation, of variables. I will outline the main ideas in the case of linear evolution equations, and then illustrate their generalisation to certain nonlinear cases of particular significance.
Resumo:
We consider the Dirichlet problem for the equation -Delta u = lambda u +/- (x, u) + h(x) in a bounded domain, where f has a sublinear growth and h is an element of L-2. We find suitable conditions on f and It in order to have at least two solutions for X near to an eigenvalue of -Delta. A typical example to which our results apply is when f (x, u) behaves at infinity like a(x)vertical bar u vertical bar(q-2)u, with M > a(x) > delta > 0, and I < q < 2. (C) 2007 Elsevier Inc. All rights reserved.