660 resultados para Nonionic Surfactants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large investment in exploration activities offshore Brazil has generated new findings, generally in carbonate reservoirs, with different wettability conditions usually considered in the sandstone, strongly water-wet. In general, the carbonates reservoirs tend to be oil-wet, it difficult to mobilize of oil these reservoirs. These oils can be mobilized by different methods, or it may reverse the wettability of the surface of the reservoir and facilitate the flow of oil, improving production rates. Thus, the objective of this work was to study the influence of inversion on the wettability of the rock in the production and recovery of petroleum from carbonate reservoirs, using microemulsions. Three systems were chosen with different classes of surfactants: a cationic (C16TAB), an anionic (SDS) and nonionic (Unitol L90). Studies of the influence of salinity on the formation of the microemulsion as well as the characterization of fluids using density and viscosity measurements were also performed. To verify the potential of microemulsion systems in changing the wettability state of the chalk oil-wet to water-wet, contact angle measurements were performed using chalk of neutral-wet as surface material. Overall, with respect to the ionic character of the surfactants tested, the cationic surfactant (C16TAB) had a greater potential for reversal in wettability able to transform the rock wettability neutral to strongly water-wet, when compared with the anionic surfactant (SDS) and nonionic (Unitol L90), which showed similar behavior, improving the wettability of the rock to water. The microemulsions of all surfactants studied were effective in oil recovery, resulting in 76.92% for the system with C16TAB, 67.42% for the SDS and 66.30% for Unitol L90 of residual oil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudomonas strains are able to biosynthesize rhamnose-containing surfactants also known as rhamnolipids. These surface-active compounds are reviewed with respect to chemical structure, properties, biosynthesis, and physiological role, focusing on their production and the use of low-cost substrates such as wastes from food industries as alternative carbon sources. The use of inexpensive raw materials such as agroindustrial wastes is an attractive strategy to reduce the production costs associated with biosurfactant production and, at same time, contribute to the reduction of environmental impact generated by the discard of residues, and the treatment costs. Carbohydrate-rich substrates generated low rhamnolipid levels, whereas oils and lipid-rich wastes have shown excellent potential as alternative carbon sources.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vesicle-micelle transition in aqueous mixtures of dioctadecyidimethylammonium and octadecyltrimethylammonium bromide (DODAB and C(18)TAB) cationic surfactants, having respectively double and single chain, was investigated by differential scanning calorimetry (DSQ, steady-state fluorescence, dynamic light scattering (DLS) and surface tension. The experiments performed at constant total surfactant concentration, up to 1.0 mM, reveal that these homologous surfactants mix together to form mixed vesicles and/or micelles, depending on the relative amount of the surfactants. The melting temperature T-m of the mixed DODAB-C(18)TAB vesicles is larger than that for the neat DODAB in water owing to the incorporation of C(18)TAB in the vesicle bilayer. The surface tension decreases sigmoidally with C(18)TAB concentration and the inflection point lies around (XDODAB) approximate to 0.4, indicating the onset of micelle formation owing to saturation of DODAB vesicles by C(18)TAB molecules. When XDODAB > 0.5 C(18)TAB molecules are mainly solubilised by the vesicles, but when XDODAB < 0.25 micelles are dominant. Fluorescence data of the Nile Red probe incorporated in the system at different surfactant molar fractions indicate the formation of micelle and vesicle structures. These structures have apparent hydrodynamic radius RH of about 180 and 500-800 nm, respectively, as obtained by DLS measurements. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used isothermal titration calorimetry to investigate the vesicle-to-micelle transition in dioctadecyldimethylammonium bromide (DODAB) and chloride (DODAC) vesicle dispersions induced by the nonionic surfactant octaethylene glycol n-dodecyl monoether (C12E8) at room temperature. Small and giant unilamellar vesicles were prepared by sonication and without sonication, respectively, of the pure cationic surfactants at low concentrations in water. The titration of 1.0 mM DODAX (X = Cl- and Br-) by a concentrated micellar solution of C12E8 shows that the enthalpy of interaction (DeltaH(obs)) of C12E8 in micellar form with DODAX is always endothermic. The titration curves are understood on the basis of superposition of the enthalpies of partitioning of C12E8 into the bilayer, of micelle formation and of vesicle-to-micelle transformation. The enthalpy, DeltaH(obs), initially increases owing to the incorporation of C12E8 into the vesicle bilayer until the C12E8/DODAX saturation ratio (R-sat) is reached, then DeltaH(obs) decreases, in different ways for DODAB and DODAC, owing to degradation of vesicles and formation of mixed micelles and intermediary structures up to the C12E8/DODAX solubilization ratio, R-sol. Above R-sol only mixed micelles exist. The surfactant solubilization takes place in three stages. All the critical ratios are lower for DODAB than for DODAC, meaning that C12E8 solubilizes more strongly in DODAB for example, R-sat is 0.8 for DODAB and 1.2 for DODAC. Sonication has no significant effect on the transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of alkanediyl-a,w-bis (dimethylalkylammonium bromide (n-2-n and n-6-n; n=8, 10,12, and 16) have been synthesized and their micelles properties studied in aqueous solution using pyrene, pyrenecarboxaldehyde (PCA) and 1,8 anilinonaphtalene sulfonic acid sodium salt (ANS) as fluorescent probes. The micelles from these surfactants have been characterized on the basis of the information provided by micelle-solubilized fluorescent probes. The obtained results indicated that the surfactant concentration at which a marked decrease in l max parameter of pyrenecarboxaldehyde (PCA) occurs corresponds to the CMC determined by conductimetric measurements. Changes in the emission spectra of ANS and PCA observed in the submicellar range for both surfactants series (n-2-n and n-6-n) were interpreted as formation of pre-aggregates. It was found that the dimeric surfactants with long spacer (s= 6) form more hydrated aggregates when compared with those formed by the n-2-n and CnTAB surfactants series. This was attributed to a more difficult packing of n-6-n surfactant molecules to form micelles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between cationic surfactants and isopropylacrylamide-acrylic acid-ethyl methacrylate (IPA:AA:EMA) terpolymers has been investigated using steady-state fluorescence and spectrophotometric measurements to assess the effect of the polymer composition on the aggregation process and terpolymers' thermosensitivities. Micropolarity studies using pyrene show that the interaction of cationic surfactants with IPA:AA:EMA terpolymers occurs at surfactant concentrations much smaller than that observed for the pure surfactant in aqueous solution. The critical aggregation concentration (CAC) values decrease with both the hydrocarbon length of the surfactant and the content of ethyl methacrylate. These results were interpreted as a manifestation of the increasing contribution of attractive hydrophobic and electrostatic forces between negatively charged polymer chains and positively charged surfactant molecules. The increase of ethyl methacrylate in the copolymers lowers the CAC due to the larger hydrophobic character of the polymer backbone. The cloud point determination reveals that the lower critical solution temperatures (LCST) depend strongly on the copolymer composition and surfactant nature. The binding of surfactants molecules to the polymer chain screens the electrostatic repulsion between the carboxylic groups inducing a conformational transition and the dehydration of the polymer chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated the influence of surfactants on the effectiveness of 35% hydrogen peroxide (HP) and 10% carbamide peroxide (CP) bleaching gels. One hundred and forty bovine teeth were used, which were stained by immersion in a coffee, red wine, and tobacco mixture for 7 days. At the end of this process, the color measurement at baseline was taken with the Vita Easyshade spectrophotometer. The teeth were divided into seven groups: (a) negative control (NC), (b) positive control for HP (PC-35), (c) HP + Tween 20 (T20-35), (d) HP + laurel sodium sulfate (LSS-35), (e) positive control for CP (PC-10), (f) CP + Tween 20 (T20-10), and (g) CP + laurel sodium sulfate (LSS-10). Group NC was kept in artificial saliva for 21 days. Groups PC-35, T20-35, and LSS 35 received three applications of bleaching gel for 10 min; the process was repeated after 7 days. Groups PC-10, T20-10, and LSS-10 received the gel for 8 h per day for 14 days. After the bleaching process, the final color was measured. The analysis of variance and Tukey tests showed statistically significant differences for the parameters of a dagger L, a dagger b, and a dagger E of the HP gels with surfactant and positive control group (PC-35). Within the limits of this in vitro study, the addition of surfactants to HP bleaching gel increased the bleaching effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between the nonionic surfactant C(12)E(5) and a high molar mass (M = 5.94 x 10(5)) poly(ethylene oxide) (PEG) in aqueous solution has been examined as a function of temperature by dynamic light scattering and fluorescence methods over a broad concentration range. Clusters of small surfactant micelles form within the PEO coil, leading to its extension. The hydrodynamic radius of the complex increases strongly with temperature as well as with the concentrations of surfactant and polymer. At high concentrations of the surfactant, the coil/micellar cluster complex coexists with free C(12)E(5) micelles in the solution. Fluorescence quenching measurements show a moderate micellar growth from 155 to 203 monomers in PEO-free solutions of C(12)E(5) over a wide concentration range (0.02-2.5%) at 8 degrees C. Below 0.25% C(12)E(5), the average aggregation number (N) of the micelles is smaller in the presence of PEO than in its absence. However, N increases with increasing surfactant concentration up to a plateau value of about 270 at about 1.2% (ca. 30 mM) C(12)E(5). At high surfactant concentrations, N is larger in the presence of polymer than in its absence, a finding which is connected to a significant lowering of the clouding temperature due to the PEO at these compositions. Similar results of increasing aggregation number followed by a plateau were also found at a fixed concentration of surfactant (2.5%) and varied PEO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudoternary phase diagrams, at 25 degrees C, were constructed for the systems soy bean oil (SBO)/surfactant/water, with single anionic sodium bis(2-ethylhexyl)sulfosuccinate (AOT), nonionic monoolein (MO) and mixtures of these surfactants, showing the isotropic phase of W/O microemulsions (MEs). The area of ME formation in the phase diagrams was shown to be dependent of the relative amount of surfactants, being larger for MO:AOT equals to 2:1. Rheological and dynamic light scattering (DLS) studies indicated that the viscosity of the isotropic ME phase exhibited two different behaviors depending on composition. The viscosity of dry MEs initially decreased with increasing amount of water following a dilution line in the phase diagram, i.e., a constant surfactant:SBO percentage ratio. As the water content increased the relative viscosity attained a minimum and then increased. This minimum could be related to the transition between two ME regions, L-2 and L'(2), having different characteristics. DLS measurements confirm the existence of ordinary W/O ME droplets in the L-2 region and suggest the existence of another structure in the L'(2) region. The size of the MEs droplets in L-2 phase ranges from 3.6 to 16.5 nm, depending on composition of SBO, surfactant and water. Small angle X-ray scattering (SAXS) also indicates the existence of structures with different characteristics, for the SAXS curves exhibit a typical micelle asymmetrical peak at low scattering vector q for MEs in L-2 but a symmetrical correlation peak at higher q vector in L'(2). (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis and self-assembly of nanomaterials can be controlled by the properties of soft matter. on one hand, dedicated nanoreactors such as reverse microemulsions or miniemulsions can be designed. on the other hand, direct shape control can be provided by the topology of liquid crystals that confine the reacting medium within a specific geometry. In the first case, the preparation of micro- or miniemulsions generally requires energetic mechanical stirring. The second approach uses thermodynamically stable systems, but it remains usually limited to binary (water + surfactant) systems. We report the preparation of different families of materials in highly ordered quaternary mediums that exhibit a liquid crystal structure with a high cell parameter. They were prepared with the proper ratios of salted water, nonpolar solvent, surfactant. and cosurfactants that form spontaneously swollen hexagonal phases. These swollen liquid crystals can be prepared from all classes of surfactants (cationic, anionic, and nonionic). They contain a regular network of parallel cylinders, whose diameters can be swollen with a nonpolar solvent, that are regularly spaced in a continuous aqueous salt solution. We demonstrate in the present report that both aqueous and organic phases can be used as nanoreactors for the preparation of materials. This property is illustrated by various examples such as the synthesis of platinum nanorods prepared in the aqueous phase or zirconia needles or the photo- or gamma-ray-induced polymerization of polydiacetylene in the organic phase. In all cases, materials can be easily extracted and their final shapes are directed by the structure-directing effect imposed by the liquid crystal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)