968 resultados para Non-small-cell Lung Carcinoma
Resumo:
PURPOSE To explore whether population-related pharmacogenomics contribute to differences in patient outcomes between clinical trials performed in Japan and the United States, given similar study designs, eligibility criteria, staging, and treatment regimens. METHODS We prospectively designed and conducted three phase III trials (Four-Arm Cooperative Study, LC00-03, and S0003) in advanced-stage, non-small-cell lung cancer, each with a common arm of paclitaxel plus carboplatin. Genomic DNA was collected from patients in LC00-03 and S0003 who received paclitaxel (225 mg/m(2)) and carboplatin (area under the concentration-time curve, 6). Genotypic variants of CYP3A4, CYP3A5, CYP2C8, NR1I2-206, ABCB1, ERCC1, and ERCC2 were analyzed by pyrosequencing or by PCR restriction fragment length polymorphism. Results were assessed by Cox model for survival and by logistic regression for response and toxicity. Results Clinical results were similar in the two Japanese trials, and were significantly different from the US trial, for survival, neutropenia, febrile neutropenia, and anemia. There was a significant difference between Japanese and US patients in genotypic distribution for CYP3A4*1B (P = .01), CYP3A5*3C (P = .03), ERCC1 118 (P < .0001), ERCC2 K751Q (P < .001), and CYP2C8 R139K (P = .01). Genotypic associations were observed between CYP3A4*1B for progression-free survival (hazard ratio [HR], 0.36; 95% CI, 0.14 to 0.94; P = .04) and ERCC2 K751Q for response (HR, 0.33; 95% CI, 0.13 to 0.83; P = .02). For grade 4 neutropenia, the HR for ABCB1 3425C-->T was 1.84 (95% CI, 0.77 to 4.48; P = .19). CONCLUSION Differences in allelic distribution for genes involved in paclitaxel disposition or DNA repair were observed between Japanese and US patients. In an exploratory analysis, genotype-related associations with patient outcomes were observed for CYP3A4*1B and ERCC2 K751Q. This common-arm approach facilitates the prospective study of population-related pharmacogenomics in which ethnic differences in antineoplastic drug disposition are anticipated.
Resumo:
When a lung tumor arises in segment 6, the close anatomical relationship to the middle lobe bronchus may make a lower bilobectomy necessary. Sleeve lobectomy may be an alternative. These procedures were compared retrospectively in 36 patients operated on between January 2005 and December 2006 with non-small-cell lung cancer (stage I-IIIB) of the right lower lobe. Sleeve lobectomy was performed in 21 patients and bilobectomy in 15 (41%). Preoperative lung function was comparable in both groups. Radical resection was achieved in 34/36 patients. Operation time was 121 min for sleeve lobectomy and 144 min for bilobectomy. Chest tubes were removed after 5 days in both groups. Postoperative lung function was better after sleeve lobectomy than bilobectomy (forced expiratory volume in 1st sec: 78% vs. 69%). Preservation of the middle lobe by sleeve lobectomy is feasible. There was no evidence that this resection was less radical, and complication rates were similar in both groups.
Resumo:
BACKGROUND: Stage IIIB non-small-cell lung cancer (NSCLC) is usually thought to be unresectable, and is managed with chemotherapy with or without radiotherapy. However, selected patients might benefit from surgical resection after neoadjuvant chemotherapy and radiotherapy. The aim of this multicentre, phase II trial was to assess the efficacy and toxicity of a neoadjuvant chemotherapy and radiotherapy followed by surgery in patients with technically operable stage IIIB NSCLC. METHODS: Between September, 2001, and May, 2006, patients with pathologically proven and technically resectable stage IIIB NSCLC were sequentially treated with three cycles of neoadjuvant chemotherapy (cisplatin with docetaxel), immediately followed by accelerated concomitant boost radiotherapy (44 Gy in 22 fractions) and definitive surgery. The primary endpoint was event-free survival at 12 months. Efficacy analyses were done by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00030810. FINDINGS: 46 patients were enrolled, with a median age of 60 years (range 28-70). 13 (28%) patients had N3 disease, 36 (78%) had T4 disease. All patients received chemotherapy; 35 (76%) patients received radiotherapy. The main toxicities during chemotherapy were neutropenia (25 patients [54%] at grade 3 or 4) and febrile neutropenia (nine [20%]); the main toxicity after radiotherapy was oesophagitis (ten patients [29%]; nine grade 2, one grade 3). 35 patients (76%) underwent surgery, with pneumonectomy in 17 patients. A complete (R0) resection was achieved in 27 patients. Peri-operative complications occurred in 14 patients, including two deaths (30-day mortality 5.7%). Seven patients required a second surgical intervention. Pathological mediastinal downstaging was seen in 11 of the 28 patients who had lymph-node involvement at enrolment, a complete pathological response was seen in six patients. Event-free survival at 12 months was 54% (95% CI 39-67). After a median follow-up of 58 months, the median overall survival was 29 months (95% CI 16.1-NA), with survival at 1, 3, and 5 years of 67% (95% CI 52-79), 47% (32-61), and 40% (24-55). INTERPRETATION: A treatment strategy of neoadjuvant chemotherapy and radiotherapy followed by surgery is feasible in selected patients. Toxicity is considerable, but manageable. Survival compares favourably with historical results of combined treatment for less advanced stage IIIA disease. FUNDING: Swiss Group for Clinical Cancer Research (SAKK) and an unrestricted educational grant by Sanofi-Aventis (Switzerland).
Resumo:
Activating epidermal growth factor receptor (EGFR) mutations are recognized biomarkers for patients with metastatic non-small cell lung cancer (NSCLC) treated with EGFR tyrosine kinase inhibitors (TKIs). EGFR TKIs can also have activity against NSCLC without EGFR mutations, requiring the identification of additional relevant biomarkers. Previous studies on tumor EGFR protein levels and EGFR gene copy number revealed inconsistent results. The aim of the study was to identify novel biomarkers of the response to TKIs in NSCLC by investigating whole genome expression at the exon-level. We used exon arrays and clinical samples from a previous trial (SAKK19/05) to investigate the expression variations at the exon-level of 3 genes potentially playing a key role in modulating treatment response: EGFR, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and vascular endothelial growth factor (VEGFA). We identified the expression of EGFR exon 18 as a new predictive marker for patients with untreated metastatic NSCLC treated with bevacizumab and erlotinib in the first line setting. The overexpression of EGFR exon 18 in tumor was significantly associated with tumor shrinkage, independently of EGFR mutation status. A similar significant association could be found in blood samples. In conclusion, exonic EGFR expression particularly in exon 18 was found to be a relevant predictive biomarker for response to bevacizumab and erlotinib. Based on these results, we propose a new model of EGFR testing in tumor and blood.
Resumo:
Treatment allocation by epidermal growth factor receptor mutation status is a new standard in patients with metastatic nonesmall-cell lung cancer. Yet, relatively few modern chemotherapy trials were conducted in patients characterized by epidermal growth factor receptor wild type. We describe the results of a multicenter phase II trial, testing in parallel 2 novel combination therapies, predefined molecular markers, and tumor rebiopsy at progression. Objective: The goal was to demonstrate that tailored therapy, according to tumor histology and epidermal growth factor receptor (EGFR) mutation status, and the introduction of novel drug combinations in the treatment of advanced nonesmall-cell lung cancer are promising for further investigation. Methods: We conducted a multicenter phase II trial with mandatory EGFR testing and 2 strata. Patients with EGFR wild type received 4 cycles of bevacizumab, pemetrexed, and cisplatin, followed by maintenance with bevacizumab and pemetrexed until progression. Patients with EGFR mutations received bevacizumab and erlotinib until progression. Patients had computed tomography scans every 6 weeks and repeat biopsy at progression. The primary end point was progression-free survival (PFS) ≥ 35% at 6 months in stratum EGFR wild type; 77 patients were required to reach a power of 90% with an alpha of 5%. Secondary end points were median PFS, overall survival, best overall response rate (ORR), and tolerability. Further biomarkers and biopsy at progression were also evaluated. Results: A total of 77 evaluable patients with EGFR wild type received an average of 9 cycles (range, 1-25). PFS at 6 months was 45.5%, median PFS was 6.9 months, overall survival was 12.1 months, and ORR was 62%. Kirsten rat sarcoma oncogene mutations and circulating vascular endothelial growth factor negatively correlated with survival, but thymidylate synthase expression did not. A total of 20 patients with EGFR mutations received an average of 16.
Resumo:
Although a trimodality regimen for patients with stage IIIA/pN2 non-small-cell lung cancer (NSCLC) has been variably used owing to limited evidence for its benefits, it remains unknown whether any patient subgroup actually receives benefit from such an approach. To explore this question, the published data were reviewed from 1990 to 2015 to identify the possible predictors and prognosticators in this setting. Overall survival was the endpoint of our study. Of 27 identified studies, none had studied the predictors of improved outcomes with trimodality treatment. Of the potential patient- and tumor-related prognosticators, age, gender, and histologic type were the most frequently formally explored. However, none of the 3 was found to influence overall survival. The most prominent finding of the present review was the substantial lack of data supporting a trimodality treatment approach in any patient subgroup. As demonstrated in completed prospective randomized studies, the use of surgery for stage IIIA NSCLC should be limited to well-defined clinical trials.
Resumo:
BACKGROUND One of the standard options in the treatment of stage IIIA/N2 non-small-cell lung cancer is neoadjuvant chemotherapy and surgery. We did a randomised trial to investigate whether the addition of neoadjuvant radiotherapy improves outcomes. METHODS We enrolled patients in 23 centres in Switzerland, Germany and Serbia. Eligible patients had pathologically proven, stage IIIA/N2 non-small-cell lung cancer and were randomly assigned to treatment groups in a 1:1 ratio. Those in the chemoradiotherapy group received three cycles of neoadjuvant chemotherapy (100 mg/m(2) cisplatin and 85 mg/m(2) docetaxel) followed by radiotherapy with 44 Gy in 22 fractions over 3 weeks, and those in the control group received neoadjuvant chemotherapy alone. All patients were scheduled to undergo surgery. Randomisation was stratified by centre, mediastinal bulk (less than 5 cm vs 5 cm or more), and weight loss (5% or more vs less than 5% in the previous 6 months). The primary endpoint was event-free survival. Analyses were done by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00030771. FINDINGS From 2001 to 2012, 232 patients were enrolled, of whom 117 were allocated to the chemoradiotherapy group and 115 to the chemotherapy group. Median event-free survival was similar in the two groups at 12·8 months (95% CI 9·7-22·9) in the chemoradiotherapy group and 11·6 months (8·4-15·2) in the chemotherapy group (p=0·67). Median overall survival was 37·1 months (95% CI 22·6-50·0) with radiotherapy, compared with 26·2 months (19·9-52·1) in the control group. Chemotherapy-related toxic effects were reported in most patients, but 91% of patients completed three cycles of chemotherapy. Radiotherapy-induced grade 3 dysphagia was seen in seven (7%) patients. Three patients died in the control group within 30 days after surgery. INTERPRETATION Radiotherapy did not add any benefit to induction chemotherapy followed by surgery. We suggest that one definitive local treatment modality combined with neoadjuvant chemotherapy is adequate to treat resectable stage IIIA/N2 non-small-cell lung cancer. FUNDING Swiss State Secretariat for Education, Research and Innovation (SERI), Swiss Cancer League, and Sanofi.
Resumo:
Lung cancer is the leading cause of cancer death. However, poor survival using conventional therapies fuel the search for more rational interventions. The objective of this study was to design and implement a 4HPR-radiation interaction model in NSCLC, employing a traditional clinical modality (radiation), a relatively new, therapeutically unexplored agent (4HPR) and rationally combining them based on molecular mechanistic findings pertaining to their interactions. To test the hypothesis that 4HPR sensitizes cells to radiation-induced cell death via G2+M accumulation, we designed a working model consisting of H522 adenocarcinoma cells (p53, K-ras mutated) derived from an NSCLC patient; 4HPR at concentrations up to 10 μM; and X radiation up to 6 Gy generated by a patient-dedicated Phillips RT-250 X ray unit at 250 KV, 15 mA, 1.85 Gy/min. We found that 4HPR produced time- and dose-dependent morphological changes, growth inhibition, and DNA damage-inducing enhancement of reactive oxygen species. A transient G2+M accumulation of cells maximal at 24 h of continuous 4HPR exposure was used for irradiation time scheduling. Our data demonstrated enhanced cell death (both apoptotic and necrotic) in irradiated cells pre-treated with 4HPR versus those with either stressor alone. 4HPR's effect of increased NSCLC cells' radioresponse was confirmed by clonogenic assay. To explore these practical findings from a molecular mechanistic perspective, we further investigated and showed that levels of cyclin B1 and p34cdc2 kinase—both components of the mitosis promoting factor (MPF) regulating the G2/M transition—did not change following 4HPR treatment. Likewise, cdc25C phosphatase was not altered. However, enhanced p34cdc2 phosphorylation on its Thr14Tyr15 residues—indicative of its inactivation and increased expression of MPF negative regulators chk1 and wee1 kinases—were supportive of explaining 4HPR-treated cells' accumulation. Hence, p34cdc2 phosphorylation, chk1, and wee1 warrant further evaluation as potential molecular targets for 4HPR-X radiation combination. In summary, we (1) demonstrated that 4HPR not only induces cell death by itself, but also increases NSCLC cells' subsequent radioresponse, indicative of potential clinical applicability, and (2) for the first time, shed light on deciphering 4HPR-X radiation molecular mechanisms of interaction, including the finding of 4HPR's role as a p34cdc2 inactivator via Thr14Tyr15 phosphorylation. ^
Resumo:
Background. The rise in survival rates along with more detailed follow-up using sophisticated imaging studies among non-small lung cancer (NSCLC) patients has led to an increased risk of second primary tumors (SPT) among these cases. Population and hospital based studies of lung cancer patients treated between 1974 and 1996 have found an increasing risk over time for the development of all cancers following treatment of non-small cell lung cancer (NSCLC). During this time the primary modalities for treatment were surgery alone, radiation alone, surgery and post-operative radiation therapy, or combinations of chemotherapy and radiation (sequentially or concurrently). There is limited information in the literature about the impact of treatment modalities on the development of second primary tumors in these patients. ^ Purpose. To investigate the impact of treatment modalities on the risk of second primary tumors in patients receiving treatment with curative intent for non-metastatic (Stage I–III) non-small cell lung cancer (NSCLC). ^ Methods. The hospital records of 1,095 NSCLC patients who were diagnosed between 1980–2001 and received treatment with curative intent at M.D. Anderson Cancer Center with surgery alone, radiation alone (with a minimum total radiation dose of at least 45Gy), surgery and post-operative radiation therapy, radiation therapy in combination with chemotherapy or surgery in combination with chemotherapy and radiation were retrospectively reviewed. A second primary malignancy was be defined as any tumor histologically different from the initial cancer, or of another anatomic location, or a tumor of the same location and histology as the initial tumor having an interval between cancers of at least five years. Only primary tumors occurring after treatment for NSCLC will qualified as second primary tumors for this study. ^ Results. The incidence of second primary tumor was 3.3%/year and the rate increased over time following treatment. The type of NSCLC treatment was not found to have a striking effect upon SPT development. Increased rates were observed in the radiation only and chemotherapy plus radiation treatment groups; but, these increases did not exceed expected random variation. Higher radiation treatment dose, patient age and weight loss prior to index NSCLC treatment were associated with higher SPT development. ^
Resumo:
Lung cancer is the leading cause of cancer deaths worldwide. The development of improved systemic therapy is needed for the most common form of the disease, non-small cell lung cancer (NSCLC). This will depend on the identification of valid molecular targets. Recent studies point to the receptor tyrosine kinase EphA2 as a novel therapeutic target. Overexpression of EphA2 has been demonstrated in a number of epithelial cancers, and its expression has been associated with more severe disease. Regulation of EphA2 in cancer is poorly understood. Recently, regulation of EphA2 by EGFR and KRAS has been reported in a number of in vitro models, but no examination of this relationship has been undertaken in patient tumors. Because of the established importance of EGFR and KRAS in NSCLC, we have investigated the relationship between these mutations and EphA2 in NSCLC patient tissues and cell lines. The significance of Epha2 expression was further examined by testing for correlation with survival, metastases, histology, and smoking status in patient tissues, and tumor cell proliferation and migration in vitro. EphA2 expression was analyzed in by immunohistochemistry in tissue microarray (TMA) format utilizing surgically resected lung cancer specimens. EGFR and KRAS mutation status was determined for the majority of specimens. EphA2 expression was detected in >90% of NSCLC tumors. High EphA2 expression was associated with decreased time to recurrence and metastases, and predicted poorer progression free and overall survival. Expression of EphA2 was positively correlated with activated EGFR and with KRAS mutation. Expression of EphA2 was also positively correlated with a history of smoking. There was no association between gender or histology and EphA2 expression. In H322 cells, activation of EGFR or KRAS resulted in an increase in EphA2 protein expression. Downregulation of EphA2 resulted in decreased proliferation in a clonal growth assay, and inhibited migration in a wound healing assay, in a panel of cell lines. The decrease in proliferation correlated with a transient decrease in the levels of phospho-ERK, a downstream effector of EGFR and KRAS. Based on these data, the potential of EphA2 as a therapeutic target for NSCLC should be further investigated. ^
Resumo:
The FUS1 tumor suppressor gene (TSG) has been found to be deficient in many human non-small cell lung cancer (NSCLC) tissue samples and cell lines (1,2,3). Studies have shown potent anti-tumor activity of FUS1 in animal models where FUS1 was delivered through a liposomal vector (4) and the use of FUS1 as a therapeutic agent is currently being studied in clinical human trials (5). Currently, the mechanisms of FUS1 activity are being investigated and my studies have shown that c-Abl tyrosine kinase is inhibited by the FUS1 TSG.^ Considering that many NSCLC cell lines are FUS1 deficient, my studies further identified that FUS1 deficient NSCLC cells have an activated c-Abl tyrosine kinase. C-Abl is a known proto-oncogene and while c-Abl kinase is tightly regulated in normal cells, constitutively active Abl kinase is known to contribute to the oncogenic phenotype in some types of hematopoietic cancers. My studies show that the active c-Abl kinase contributes to the oncogenicity of NSCLC cells, particularly in tumors that are deficient in FUS1, and that c-Abl may prove to be a viable target in NSCLC therapy.^ Current studies have shown that growth factor receptors play a role in NSCLC. Over-expression of the epidermal growth factor receptor (EGFR) plays a significant role in aggressiveness of NSCLC. Current late stage treatments include EFGR tyrosine kinase inhibitors or EGFR antibodies. Platelet-derived growth factor receptor (PDGFR) also has been shown to play a role in NSCLC. Of note, both growth factor receptors are known upstream activators of c-Abl kinase. My studies indicate that growth factor receptor simulation along deficiency in FUS1 expression contributes to the activation of c-Abl kinase in NSCLC cells. ^