946 resultados para Non-long Terminal Repeat
Resumo:
To study telomere length dynamics in hematopoietic cells with age, we analyzed the average length of telomere repeat sequences in diverse populations of nucleated blood cells. More than 500 individuals ranging in age from 0 to 90 yr, including 36 pairs of monozygous and dizygotic twins, were analyzed using quantitative fluorescence in situ hybridization and flow cytometry. Granulocytes and naive T cells showed a parallel biphasic decline in telomere length with age that most likely reflected accumulated cell divisions in the common precursors of both cell types: hematopoietic stem cells. Telomere loss was very rapid in the first year, and continued for more than eight decades at a 30-fold lower rate. Memory T cells also showed an initial rapid decline in telomere length with age. However, in contrast to naive T cells, this decline continued for several years, and in older individuals lymphocytes typically had shorter telomeres than did granulocytes. Our findings point to a dramatic decline in stem cell turnover in early childhood and support the notion that cell divisions in hematopoietic stem cells and T cells result in loss of telomeric DNA.
Resumo:
Summary: Adeno-associated virus type 2 (AAV2) is a small virus containing single-stranded DNA of approximately 4.7kb in size. Both ends of the viral genome are flanked with inverted terminal repeat sequences (ITRs), which serve as primers for viral replication. Previous work in our laboratory has shown that AAV2 DNA with ultraviolet radiation-generated crosslinks (UV-AAV2) provokes a DNA damage response in the host cell by mimicking a stalled replication fork. Infection of cells with UV-AAV2 leads to a p53-and Chk1-mediated cell cycle arrest at the G2/M border of the cell cycle. However, tumour cells lacking the tumour suppressor protein p53 cannot sustain this arrest and enter a prolonged impaired mitosis, the outcome of which is cell death. The aim of my thesis was to investigate how UV-inactivated AAV2 kilts p53-deficient cancer cells. I found that the UV-AAV2-induced DNA damage signalling induces centriole overduplication in infected cells. The virus is able to uncouple the centriole duplication cycle from the cell cycle, leading to amplified centrosome numbers. Chk1 colocalises with centrosomes in the infected cells and the centrosome overduplication is dependent on the presence of Chk1, as well as on the activities of ATR and Cdk kinases and on the G2 arrest. The UV-AAV2-induced DNA damage signalling inhibits the degradation of cyclin B 1 and securin by the anaphase promoting complex, suggesting that the spindle checkpoint is activated in these mitotic cells. Interference with the spindle checkpoint components Mad2 and BubR1 revealed that the UV-AAV2-provoked mitotic catastrophe occurs independently of spindle checkpoint function, This work shows that, in the p53 deficient cells, UV-AAV2 triggers mitotic catastrophe associated with a dramatic Chk1-dependent overduplication of centrioles and the consequent formation of multiple spindle poles in mitosis. Résumé Le virus associé à l'adénovirus type 2 (AAV2) est un petit virus contenant un simple brin d'ADN d'environ 4.7kb. Des expériences antérieures dans notre laboratoire ont montré que les liens intramoléculaires sur l'ADN de AAV2 provoqués paz l'irradiation aux ultraviolets (UV) ressemblent à une fourche de réplication bloquée, ce qui provoque une réponse aux dommages à l'ADN dans la cellule hôte. L'infection des cellules avec UV-AAV2 résulte en un arrêt du cycle cellulaire à la transition G2/M entraîné par les protéines ATR et Chk1. Cependant, les cellules tumorales auxquelles il manque le suppresseur de tumeur p53 ne peuvent pas tenir cet arrêt et entrent dans une mitose anormale et prolongée qui se terminera par la mort cellulaire. Le but de ma thèse était d'étudier comment l'AAV2 inactivé par l'irradiation UV tue les cellules cancéreuses n'ayant pas p53. Je montre ici que le signal de dommages à l'ADN induit par UV-AAV2 génère une surduplication des centrioles dans les cellules infectées. Le virus est capable de dissocier le cycle de duplication du centriole du cycle cellulaire ce qui crée un nombre amplifié de centrosomes. Chk1 est co-localisé avec le centrosome dans les cellules infectées et la swduplication du centrosome est dépendante de la présence de Chk1, de l'activité des kinases ATR et Cdk et de l'arrêt en G2 de la cellule. Le signal d'ADN endommagé induit par UV-AAV2 réprime la dégradation des protéines cycline B1 et securine par le complexe promoteur de l'anaphase (APC), ce qui suggère que le point de contrôle du fuseau mitotique est activé dans ces cellules en mitose. L'étude d'interférence avec des éléments du point de contrôle du fuseau mitotique, Mad2 et BubR1, a révélé que la catastrophe mitotique provoquée paz UV-AAV2 survient indépendamment du point de contrôle du fuseau mitotique. Ce travail montre que dans les cellules déficientes en p53, UV-AAV2 induit une catastrophe mitotique associée à une surduplication des centrioles dépendant de Chk1 et ayant pour conséquence dramatique la formation de multiples fuseaux mitotiques dans la cellule en mitose.
Resumo:
We encapsulated cisplatin into stealth pH-sensitive liposomes and studied their stability, cytotoxicity and accumulation in a human small-cell lung carcinoma cell line (GLC4) and its resistant subline (GLC4/CDDP). Since reduced cellular drug accumulation has been shown to be the main mechanism responsible for resistance in the GLC4/CDDP subline, we evaluated the ability of this new delivery system to improve cellular uptake. The liposomes were composed of dioleoylphosphatidylethanolamine (DOPE), cholesteryl hemisuccinate (CHEMS), and distearoylphosphatidylethanolamine-polyethyleneglycol 2000 (DSPE-PEG2000) and were characterized by determining the encapsulation percentage as a function of lipid concentration. Among the different formulations, DOPE/CHEMS/DSPE-PEG liposomes (lipid concentration equal to 40 mM) encapsulated cisplatin more efficiently than other concentrations of liposomes (about 20.0%, mean diameter of 174 nm). These liposomes presented good stability in mouse plasma which was obtained using a 0.24-M EDTA solution (70% cisplatin was retained inside the liposomes after 30 min of incubation). Concerning cytotoxic effects, they are more effective (1.34-fold) than free cisplatin for growth inhibition of the human lung cancer cell line A549. The study of cytotoxicity to GLC4 and GLC4/CDDP cell lines showed similar IC50 values (approximately 1.4 µM), i.e., cisplatin-resistant cells were sensitive to this cisplatin formulation. Platinum accumulation in both sensitive and resistant cell lines followed the same pattern, i.e., approximately the same intracellular platinum concentration (4.0 x 10-17 mol/cell) yielded the same cytotoxic effect. These results indicate that long-circulating pH-sensitive liposomes, also termed as stealth pH-sensitive liposomes, may present a promising delivery system for cisplatin-based cancer treatment. This liposome system proved to be able to circumvent the cisplatin resistance, whereas it was not observed when using non-long-circulating liposomes composed of phosphatidylcholine, phosphatidylserine, and cholesterol.
Resumo:
A deeper understanding of random markers is important if they are to be employed for a range of objectives. The sequence specific amplified polymorphism (S-SAP) technique is a powerful genetic analysis tool which exploits the high copy number of retrotransposon long terminal repeats (LTRs) in the plant genome. The distribution and inheritance of S-SAP bands in the barley genome was studied using the Steptoe × Morex (S × M) double haploid (DH) population. Six S-SAP primer combinations generated 98 polymorphic bands, and map positions were assigned to all but one band. Eight putative co-dominant loci were detected, representing 16 of the mapped markers. Thus at least 81 of the mapped S-SAP loci were dominant. The markers were distributed along all of the seven chromosomes and a tendency to cluster was observed. The distribution of S-SAP markers over the barley genome concurred with the knowledge of the high copy number of retrotransposons in plants. This experiment has demonstrated the potential for the S-SAP technique to be applied in a range of analyses such as genetic fingerprinting, marker assisted breeding, biodiversity assessment and phylogenetic analyses.
Resumo:
Eukaryotic genome expansion/retraction caused by LTR-retrotransposon activity is dependent on the expression of full length copies to trigger efficient transposition and recombination-driven events. The Tnt1 family of retrotransposons has served as a model to evaluate the diversity among closely related elements within Solanaceae species and found that members of the family vary mainly in their U3 region of the long terminal repeats (LTRs). Recovery of a full length genomic copy of Retrosol was performed through a PCR-based approach from wild potato, Solanum oplocense. Further characterization focusing on both LTR sequences of the amplified copy allowed estimating an approximate insertion time at 2 million years ago thus supporting the occurrence of transposition cycles after genus divergence. Copy number of Tnt1-like elements in Solanum species were determined through genomic quantitative PCR whereby results sustain that Retrosol in Solanum species is a low copy number retrotransposon (1-4 copies) while Retrolyc1 has an intermediate copy number (38 copies) in S. peruvianum. Comparative analysis of retrotransposon content revealed no correlation between genome size or ploidy level and Retrosol copy number. The tetraploid cultivated potato with a cellular genome size of 1,715 Mbp harbours similar copy number per monoploid genome than other diploid Solanum species (613-884 Mbp). Conversely, S. peruvianum genome (1,125 Mbp) has a higher copy number. These results point towards a lineage specific dynamic flux regarding the history of amplification/activity of Tnt1-like elements in the genome of Solanum species.
Resumo:
Two mariner-like elements, Ramar1 and Ramar2, are described in the genome of Rhynchosciara americana, whose nucleotide consensus sequences were derived from multiple defective copies containing deletions, frame shifts and stop codons. Ramar1 contains several conserved amino acid blocks which were identified, including a specific D,D(34)D signature motif. Ramar2 is a defective mariner-like element, which contains a deletion overlapping in most of the internal region of the transposase ORF while its extremities remain intact. Predicted transposase sequences demonstrated that Ramar1 and Ramar2 phylogenetically present high identity to mariner-like elements of mauritiana subfamily. Southern blot analysis indicated that Ramar1 is widely represented in the genome of Rhynchosciara americana. In situ hybridizations showed Ramar1 localized in several chromosome regions, mainly in pericentromeric heterochromatin and their boundaries, while Ramar2 appeared as a single band in chromosome A.
Resumo:
Angelonia salicariifolia is an herbaceous perennial native to Brazil with ornamental potential as garden plant, cut-flower and potted plant. It has blue flowers 1.0 to 1.4 cm long, in 10-30 cm long terminal racemes. In previous studies seeds of A. salicariifolia showed a positive photoblastic behavior under constant temperatures of 10, 15, 20, 25, 30 and 35 degrees C. The present study evaluated the effects of growth regulators (100, 200, 300, 400, 500 mg L-1 of gibberellic acid and 2.25, 11.3, 22.5 mg L-1 of 6-benzylamino-purine) and potassium nitrate (0.2 and 1.0 %) on promoting its seed germination. The experiment was conducted in a completely randomized design with six replications of 25 seeds, for each treatment. Seeds from dehiscent capsules were sown on one layer of filter paper and moistened with growth regulators or KNO3 solutions. Germination was carried out at 25 degrees C +/- 1 degrees C, under continuous light or darkness. Germination (protusion of the radicle) was observed daily for 20 days. In the dark, only gibberellic acid promoted seed germination. The percentage of germination and the speed of germination index at 400 mg L-1 (47.3%; 0.86) and 500 mg L-1 (52.0%; 0.95) were significantly higher compared to 100 mg L-1 (27.8%; 0.38) and 200 mg L-1 (32.3%; 0.49). The mean germination time at 500 mg L-1 (10.0 days) was significantly smaller compared to 100 mg L-1 (11.9 days) and 200 mg L-1 (11.5 days). Under light, treatments did not differ among each other or from the control, except for 22.5 mg L-1 of 6-benzylamino-purine and potassium nitrate (1.0%), which decreased the percentage of germination and the speed of germination index compared to control. The application of growth regulators or potassium nitrate under light condition is not necessary, since these treatments did not improve germination percentage or the speed of germination index.
Resumo:
Objective-To determine the pharmacokinetics of dexmedetomidine administered as a short-duration IV infusion in isoflurane-anesthetized cats. Animals-6 healthy adult domestic female cats. Procedures-Dexmedetomidine hydrochloride was injected IV (10 μg/kg over 5 minutes [rate, 2 μg/kg/min]) in isoflurane-anesthetized cats. Blood samples were obtained immediately prior to and at 1, 2, 5, 6, 7, 10, 15, 30, 60, 90, 120, 240, and 480 minutes following the start of the IV infusion. Collected blood samples were transferred to tubes containing EDTA, immediately placed on ice, and then centrifuged at 3,901 X g for 10 minutes at 4°C. The plasma was harvested and stored at -20°C until analyzed. Plasma dexmedetomidine concentrations were determined by means of liquid chromatography-mass spectrometry. Dexmedetomidine plasma concentration-time data were fitted to compartmental models. Results-A 2-compartment model with input in and elimination from the central compartment best described the disposition of dexmedetomidine administered via short-duration IV infusion in isoflurane-anesthetized cats. Weighted mean ± SEM apparent volume of distribution of the central compartment and apparent volume of distribution at steady-state were 402 ± 47 mL/kg and 1,701 ± 200 mL/kg, respectively; clearance and terminal half-life (harmonic mean ± jackknife pseudo-SD) were 6.3 ± 2.8 mL/min/kg and 198 ± 75 minutes, respectively. The area under the plasma concentration curve and maximal plasma concentration were 1,061 ± 292 min·ng/mL and 17.6 ± 1.8 ng/mL, respectively. Conclusions and Clinical Relevance-Disposition of dexmedetomidine administered via short-duration IV infusion in isoflurane-anesthetized cats was characterized by a moderate clearance and a long terminal half-life.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Large distribution and high sequence identity of a Copia-type retrotransposon in angiosperm families
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Mobile elements are widely present in eukaryotic genomes. They are repeated DNA segments that are able to move from one locus to another within the genome. They are divided into two main categories, depending on their mechanism of transposition, involving RNA (class I) or DNA (class II) molecules. The mariner-like elements are class II transposons. They encode their own transposase, which is necessary and sufficient for transposition in the absence of host factors. They are flanked by a short inverted terminal repeat and a TA dinucleotide target site, which is duplicated upon insertion. The transposase consists of two domains, an N-terminal inverted terminal repeat binding domain and a C-terminal catalytic domain. We identified a transposable element with molecular characteristics of a mariner-like element in Atta sexdens rubropilosa genome. Identification started from a PCR with degenerate primers and queen genomic DNA templates, with which it was possible to amplify a fragment with mariner transposable-element homology. Phylogenetic analysis demonstrated that this element belongs to the mauritiana subfamily of mariner-like elements and it was named Asmar1. We found that Asmar1 is homologous to a transposon described from another ant, Messor bouvieri. The predicted transposase sequence demonstrated that Asmar1 has a truncated transposase ORF. This study is part of a molecular characterization of mobile elements in the Atta spp genome. Our finding of mariner-like elements in all castes of this ant could be useful to help understand the dynamics of mariner-like element distribution in the Hymenoptera.
Resumo:
Der Längenpolymorphismus des C4-Gens beruht auf der An- oder Abwesenheit einer 6.4 kb langen Insertion im Intron 9. Es handelt sich dabei um einen eigenständigen bisher noch nicht beschriebenen Virus-Typ, der alle Sequenzmerkmale der Familie der humanen endogenen Retroviren (HERV) trägt und zu den HERV-K Viren gehört. Der Provirus wurde als HERV-K(C4) bezeichnet. Die Orientierung dieses retroviralen Elements ist entgegengesetzt zu der Transkriptionsrichtung des C4-Gens. Mittels RT-PCR, RNase Protection Assays und Northern-Blot Analysen konnte der Nachweis von HERV-K(C4)-Antisense mRNA-Transkripten in verschiedenen humanen Zellinien und Geweben erbracht werden. Die retroviralen Transkripte schlossen am 5'- und 3'-Ende Sequenzen des C4-Exon 9 und Exon 10 ein, so daß diese wahrscheinlich "readthrough" Transkripte darstellen, die durch einen 5' des LTR2 gelegenen Promotor initiiert oder im Zusammenhang mit der C4-Expression transkribiert und reguliert werden. Weiterhin konnten insgesamt 4 HERV-K(C4)-mRNA Spezies, einschließlich einer Vollängen-RNA detektiert werden. Die drei subgenomischen mRNAs werden vermutlich durch einfaches und mehrfaches Spleißen generiert. Die quantitative Analyse in verschiedenen humanen Zellinien ergab, daß HERV-K(C4) durchschnittlich mit einer Kopienanzahl zwischen ca.1 bis 100 Transkripten in einer Zelle vorkommt, so daß es sich um low abundance mRNAs handelt. Mittels eines Reportergen-System konnte eine Aktivität des LTR2-Promotors in der Sense-Orientierung des Retrovirus nachgewiesen werden, die nach Stimulation mit IFN- signifikant abnahm. Ein humanes Modell-Systems wurde etabliert, um die Theorie einer Antisense-Abwehr gegen exogene Retroviren in HepG2-Zellen zu überprüfen. Die Theorie basiert auf dem Nachweis von HERV-K(C4)-Antisense-Transkripten, die über eine Heteroduplexbildung mit der Sense-mRNA von verwandten, infektiösen Retroviren eine mögliche Blockierung deren Translation erwirken könnten. Es konnte eine signifikante Abnahme der retroviralen Expression von bis zu 45% nach steigenden Dosen an IFN- in HepG2-Zellen nachgewiesen werden. Der funktionell aktive 3'-LTR-Sense Promotor sowie der Nachweis von HERV-K(C4)-Antisense Transkripten sprechen für die bedeutende Rolle von HERV-K(C4) bei der Genregulation und Schutz gegen exogene Retroviren, wodurch eine Selektion stattgefunden hat.
Resumo:
The piggyBac (IFP2) short inverted terminal repeat transposable element from the cabbage looper Trichoplusia ni was tested for gene transfer vector function as part of a bipartite vector–helper system in the Mediterranean fruit fly Ceratitis capitata. A piggyBac vector marked with the medfly white gene was tested with a normally regulated piggyBac transposase helper at two different concentrations in a white eye host strain. Both experiments yielded transformants at an approximate frequency of 3–5%, with a total of six lines isolated having pigmented eyes with various levels of coloration. G1 transformant siblings from each line shared at least one common integration, with several sublines having an additional second integration. For the first transformant line isolated, two integrations were determined to be stable for 15 generations. For five of the lines, a piggyBac-mediated transposition was verified by sequencing the insertion site junctions isolated by inverse PCR that identified a characteristic piggyBac TTAA target site duplication. The efficient and stable transformation of the medfly with a lepidopteran vector represents transposon function over a relatively large evolutionary distance and suggests that the piggyBac system will be functional in a broad range of insects.
Resumo:
The adeno-associated virus 2 (AAV), a single-stranded DNA-containing, nonpathogenic human parvovirus, has gained attention as a potentially useful vector for human gene therapy. However, the single-stranded nature of the viral genome significantly impacts upon the transduction efficiency, because the second-strand viral DNA synthesis is the rate-limiting step. We hypothesized that a host-cell protein interacts with the single-stranded D sequence within the inverted terminal repeat structure of the AAV genome and prevents the viral second-strand DNA synthesis. Indeed, a cellular protein has been identified that interacts specifically and preferentially with the D sequence at the 3′ end of the AAV genome. This protein, designated the single-stranded D-sequence-binding protein (ssD-BP), is phosphorylated at tyrosine residues and blocks AAV-mediated transgene expression in infected cells by inhibiting the leading strand viral DNA synthesis. Inhibition of cellular protein tyrosine kinases by genistein results in dephosphorylation of the ssD-BP, leading not only to significant augmentation of transgene expression from recombinant AAV but also to autonomous replication of the wild-type AAV genome. Dephosphorylation of the ssD-BP also correlates with adenovirus infection, or expression of the adenovirus E4orf6 protein, which is known to induce AAV DNA replication and gene expression. Thus, phosphorylation state of the ssD-BP appears to play a crucial role in the life cycle of AAV and may prove to be an important determinant in the successful use of AAV-based vectors in human gene therapy.
Resumo:
A set of oat–maize chromosome addition lines with individual maize (Zea mays L.) chromosomes present in plants with a complete oat (Avena sativa L.) chromosome complement provides a unique opportunity to analyze the organization of centromeric regions of each maize chromosome. A DNA sequence, MCS1a, described previously as a maize centromere-associated sequence, was used as a probe to isolate cosmid clones from a genomic library made of DNA purified from a maize chromosome 9 addition line. Analysis of six cosmid clones containing centromeric DNA segments revealed a complex organization. The MCS1a sequence was found to comprise a portion of the long terminal repeats of a retrotransposon-like repeated element, termed CentA. Two of the six cosmid clones contained regions composed of a newly identified family of tandem repeats, termed CentC. Copies of CentA and tandem arrays of CentC are interspersed with other repetitive elements, including the previously identified maize retroelements Huck and Prem2. Fluorescence in situ hybridization revealed that CentC and CentA elements are limited to the centromeric region of each maize chromosome. The retroelements Huck and Prem2 are dispersed along all maize chromosomes, although Huck elements are present in an increased concentration around centromeric regions. Significant variation in the size of the blocks of CentC and in the copy number of CentA elements, as well as restriction fragment length variations were detected within the centromeric region of each maize chromosome studied. The different proportions and arrangements of these elements and likely others provide each centromeric region with a unique overall structure.