858 resultados para Non-functional requirement. Software architecture. NFR-framework. Architectural pattern


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimizing and editing enterprise software systems, after the implementation process has started, is widely recognized to be an expensive process. This has led to increasing emphasis on locating mistakes within software systems at the design stage, to help minimize development costs. There is increasing interest in the field of architecture evaluation techniques that can identify problems at the design stage, either within complete, or partially complete architectures. Most current techniques rely on manual review-based evaluation methods that require advanced skills from architects and evaluators. We are currently considering what a formal Architecture Description Language (ADL) can contribute to the process of architecture evaluation and validation. Our investigation is considering the inter-relationships between the activities performed during the architecture evaluation process, the characteristics an ADL should possess to support these activities, and the tools needed to provide convenient access to, and presentation of architectural information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In der vorliegenden Arbeit wird die Konzeption und Realisierung der Persistenz-, Verteilungs- und Versionierungsbibliothek CoObRA 2 vorgestellt. Es werden zunächst die Anforderungen an ein solches Rahmenwerk aufgenommen und vorhandene Technologien für dieses Anwendungsgebiet vorgestellt. Das in der neuen Bibliothek eingesetzte Verfahren setzt Änderungsprotokolle beziehungsweise -listen ein, um Persistenzdaten für Dokumente und Versionen zu definieren. Dieses Konzept wird dabei durch eine Abbildung auf Kontrukte aus der Graphentheorie gestützt, um die Semantik von Modell, Änderungen und deren Anwendung zu definieren. Bei der Umsetzung werden insbesondere das Design der Bibliothek und die Entscheidungen, die zu der gewählten Softwarearchitektur führten, eingehend erläutert. Dies ist zentraler Aspekt der Arbeit, da die Flexibilität des Rahmenwerks eine wichtige Anforderung darstellt. Abschließend werden die Einsatzmöglichkeiten an konkreten Beispielanwendungen erläutert und bereits gemachte Erfahrungen beim Einsatz in CASE-Tools, Forschungsanwendungen und Echtzeit-Simulationsumgebungen präsentiert.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visualization of high-dimensional data requires a mapping to a visual space. Whenever the goal is to preserve similarity relations a frequent strategy is to use 2D projections, which afford intuitive interactive exploration, e. g., by users locating and selecting groups and gradually drilling down to individual objects. In this paper, we propose a framework for projecting high-dimensional data to 3D visual spaces, based on a generalization of the Least-Square Projection (LSP). We compare projections to 2D and 3D visual spaces both quantitatively and through a user study considering certain exploration tasks. The quantitative analysis confirms that 3D projections outperform 2D projections in terms of precision. The user study indicates that certain tasks can be more reliably and confidently answered with 3D projections. Nonetheless, as 3D projections are displayed on 2D screens, interaction is more difficult. Therefore, we incorporate suitable interaction functionalities into a framework that supports 3D transformations, predefined optimal 2D views, coordinated 2D and 3D views, and hierarchical 3D cluster definition and exploration. For visually encoding data clusters in a 3D setup, we employ color coding of projected data points as well as four types of surface renderings. A second user study evaluates the suitability of these visual encodings. Several examples illustrate the framework`s applicability for both visual exploration of multidimensional abstract (non-spatial) data as well as the feature space of multi-variate spatial data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reusable and evolvable Software Engineering Environments (SEES) are essential to software production and have increasingly become a need. In another perspective, software architectures and reference architectures have played a significant role in determining the success of software systems. In this paper we present a reference architecture for SEEs, named RefASSET, which is based on concepts coming from the aspect-oriented approach. This architecture is specialized to the software testing domain and the development of tools for that domain is discussed. This and other case studies have pointed out that the use of aspects in RefASSET provides a better Separation of Concerns, resulting in reusable and evolvable SEEs. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Architecture description languages (ADLs) are used to specify high-level, compositional views of a software application. ADL research focuses on software composed of prefabricated parts, so-called software components. ADLs usually come equipped with rigorous state-transition style semantics, facilitating verification and analysis of specifications. Consequently, ADLs are well suited to configuring distributed and event-based systems. However, additional expressive power is required for the description of enterprise software architectures – in particular, those built upon newer middleware, such as implementations of Java’s EJB specification, or Microsoft’s COM+/.NET. The enterprise requires distributed software solutions that are scalable, business-oriented and mission-critical. We can make progress toward attaining these qualities at various stages of the software development process. In particular, progress at the architectural level can be leveraged through use of an ADL that incorporates trust and dependability analysis. Also, current industry approaches to enterprise development do not address several important architectural design issues. The TrustME ADL is designed to meet these requirements, through combining approaches to software architecture specification with rigorous design-by-contract ideas. In this paper, we focus on several aspects of TrustME that facilitate specification and analysis of middleware-based architectures for trusted enterprise computing systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Model-oriented strategies have been used to facilitate products customization in the software products lines (SPL) context and to generate the source code of these derived products through variability management. Most of these strategies use an UML (Unified Modeling Language)-based model specification. Despite its wide application, the UML-based model specification has some limitations such as the fact that it is essentially graphic, presents deficiencies regarding the precise description of the system architecture semantic representation, and generates a large model, thus hampering the visualization and comprehension of the system elements. In contrast, architecture description languages (ADLs) provide graphic and textual support for the structural representation of architectural elements, their constraints and interactions. This thesis introduces ArchSPL-MDD, a model-driven strategy in which models are specified and configured by using the LightPL-ACME ADL. Such strategy is associated to a generic process with systematic activities that enable to automatically generate customized source code from the product model. ArchSPLMDD strategy integrates aspect-oriented software development (AOSD), modeldriven development (MDD) and SPL, thus enabling the explicit modeling as well as the modularization of variabilities and crosscutting concerns. The process is instantiated by the ArchSPL-MDD tool, which supports the specification of domain models (the focus of the development) in LightPL-ACME. The ArchSPL-MDD uses the Ginga Digital TV middleware as case study. In order to evaluate the efficiency, applicability, expressiveness, and complexity of the ArchSPL-MDD strategy, a controlled experiment was carried out in order to evaluate and compare the ArchSPL-MDD tool with the GingaForAll tool, which instantiates the process that is part of the GingaForAll UML-based strategy. Both tools were used for configuring the products of Ginga SPL and generating the product source code

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A great challenge of the Component Based Development is the creation of mechanisms to facilitate the finding of reusable assets that fulfill the requirements of a particular system under development. In this sense, some component repositories have been proposed in order to answer such a need. However, repositories need to represent the asset characteristics that can be taken into account by the consumers when choosing the more adequate assets for their needs. In such a context, the literature presents some models proposed to describe the asset characteristics, such as identification, classification, non-functional requirements, usage and deployment information and component interfaces. Nevertheless, the set of characteristics represented by those models is insufficient to describe information used before, during and after the asset acquisition. This information refers to negotiation, certification, change history, adopted development process, events, exceptions and so on. In order to overcome this gap, this work proposes an XML-based model to represent several characteristics, of different asset types, that may be employed in the component-based development. Besides representing metadata used by consumers, useful for asset discovering, acquisition and usage, this model, called X-ARM, also focus on helping asset developers activities. Since the proposed model represents an expressive amount of information, this work also presents a tool called X-Packager, developed with the goal of helping asset description with X-ARM

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web 1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs. These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools. Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate. However, linguistic annotation tools have still some limitations, which can be summarised as follows: 1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.). 2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts. 3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc. A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved. In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool. Therefore, it would be quite useful to find a way to (i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools; (ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate. Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned. Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section. 2. GOALS OF THE PRESENT WORK As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based triples, as in the usual Semantic Web languages (namely RDF(S) and OWL), in order for the model to be considered suitable for the Semantic Web. Besides, to be useful for the Semantic Web, this model should provide a way to automate the annotation of web pages. As for the present work, this requirement involved reusing the linguistic annotation tools purchased by the OEG research group (http://www.oeg-upm.net), but solving beforehand (or, at least, minimising) some of their limitations. Therefore, this model had to minimise these limitations by means of the integration of several linguistic annotation tools into a common architecture. Since this integration required the interoperation of tools and their annotations, ontologies were proposed as the main technological component to make them effectively interoperate. From the very beginning, it seemed that the formalisation of the elements and the knowledge underlying linguistic annotations within an appropriate set of ontologies would be a great step forward towards the formulation of such a model (henceforth referred to as OntoTag). Obviously, first, to combine the results of the linguistic annotation tools that operated at the same level, their annotation schemas had to be unified (or, preferably, standardised) in advance. This entailed the unification (id. standardisation) of their tags (both their representation and their meaning), and their format or syntax. Second, to merge the results of the linguistic annotation tools operating at different levels, their respective annotation schemas had to be (a) made interoperable and (b) integrated. And third, in order for the resulting annotations to suit the Semantic Web, they had to be specified by means of an ontology-based vocabulary, and structured by means of ontology-based triples, as hinted above. Therefore, a new annotation scheme had to be devised, based both on ontologies and on this type of triples, which allowed for the combination and the integration of the annotations of any set of linguistic annotation tools. This annotation scheme was considered a fundamental part of the model proposed here, and its development was, accordingly, another major objective of the present work. All these goals, aims and objectives could be re-stated more clearly as follows: Goal 1: Development of a set of ontologies for the formalisation of the linguistic knowledge relating linguistic annotation. Sub-goal 1.1: Ontological formalisation of the EAGLES (1996a; 1996b) de facto standards for morphosyntactic and syntactic annotation, in a way that helps respect the triple structure recommended for annotations in these works (which is isomorphic to the triple structures used in the context of the Semantic Web). Sub-goal 1.2: Incorporation into this preliminary ontological formalisation of other existing standards and standard proposals relating the levels mentioned above, such as those currently under development within ISO/TC 37 (the ISO Technical Committee dealing with Terminology, which deals also with linguistic resources and annotations). Sub-goal 1.3: Generalisation and extension of the recommendations in EAGLES (1996a; 1996b) and ISO/TC 37 to the semantic level, for which no ISO/TC 37 standards have been developed yet. Sub-goal 1.4: Ontological formalisation of the generalisations and/or extensions obtained in the previous sub-goal as generalisations and/or extensions of the corresponding ontology (or ontologies). Sub-goal 1.5: Ontological formalisation of the knowledge required to link, combine and unite the knowledge represented in the previously developed ontology (or ontologies). Goal 2: Development of OntoTag’s annotation scheme, a standard-based abstract scheme for the hybrid (linguistically-motivated and ontological-based) annotation of texts. Sub-goal 2.1: Development of the standard-based morphosyntactic annotation level of OntoTag’s scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996a) and also the recommendations included in the ISO/MAF (2008) standard draft. Sub-goal 2.2: Development of the standard-based syntactic annotation level of the hybrid abstract scheme. This level should include, and possibly extend, the recommendations of EAGLES (1996b) and the ISO/SynAF (2010) standard draft. Sub-goal 2.3: Development of the standard-based semantic annotation level of OntoTag’s (abstract) scheme. Sub-goal 2.4: Development of the mechanisms for a convenient integration of the three annotation levels already mentioned. These mechanisms should take into account the recommendations included in the ISO/LAF (2009) standard draft. Goal 3: Design of OntoTag’s (abstract) annotation architecture, an abstract architecture for the hybrid (semantic) annotation of texts (i) that facilitates the integration and interoperation of different linguistic annotation tools, and (ii) whose results comply with OntoTag’s annotation scheme. Sub-goal 3.1: Specification of the decanting processes that allow for the classification and separation, according to their corresponding levels, of the results of the linguistic tools annotating at several different levels. Sub-goal 3.2: Specification of the standardisation processes that allow (a) complying with the standardisation requirements of OntoTag’s annotation scheme, as well as (b) combining the results of those linguistic tools that share some level of annotation. Sub-goal 3.3: Specification of the merging processes that allow for the combination of the output annotations and the interoperation of those linguistic tools that share some level of annotation. Sub-goal 3.4: Specification of the merge processes that allow for the integration of the results and the interoperation of those tools performing their annotations at different levels. Goal 4: Generation of OntoTagger’s schema, a concrete instance of OntoTag’s abstract scheme for a concrete set of linguistic annotations. These linguistic annotations result from the tools and the resources available in the research group, namely • Bitext’s DataLexica (http://www.bitext.com/EN/datalexica.asp), • LACELL’s (POS) tagger (http://www.um.es/grupos/grupo-lacell/quees.php), • Connexor’s FDG (http://www.connexor.eu/technology/machinese/glossary/fdg/), and • EuroWordNet (Vossen et al., 1998). This schema should help evaluate OntoTag’s underlying hypotheses, stated below. Consequently, it should implement, at least, those levels of the abstract scheme dealing with the annotations of the set of tools considered in this implementation. This includes the morphosyntactic, the syntactic and the semantic levels. Goal 5: Implementation of OntoTagger’s configuration, a concrete instance of OntoTag’s abstract architecture for this set of linguistic tools and annotations. This configuration (1) had to use the schema generated in the previous goal; and (2) should help support or refute the hypotheses of this work as well (see the next section). Sub-goal 5.1: Implementation of the decanting processes that facilitate the classification and separation of the results of those linguistic resources that provide annotations at several different levels (on the one hand, LACELL’s tagger operates at the morphosyntactic level and, minimally, also at the semantic level; on the other hand, FDG operates at the morphosyntactic and the syntactic levels and, minimally, at the semantic level as well). Sub-goal 5.2: Implementation of the standardisation processes that allow (i) specifying the results of those linguistic tools that share some level of annotation according to the requirements of OntoTagger’s schema, as well as (ii) combining these shared level results. In particular, all the tools selected perform morphosyntactic annotations and they had to be conveniently combined by means of these processes. Sub-goal 5.3: Implementation of the merging processes that allow for the combination (and possibly the improvement) of the annotations and the interoperation of the tools that share some level of annotation (in particular, those relating the morphosyntactic level, as in the previous sub-goal). Sub-goal 5.4: Implementation of the merging processes that allow for the integration of the different standardised and combined annotations aforementioned, relating all the levels considered. Sub-goal 5.5: Improvement of the semantic level of this configuration by adding a named entity recognition, (sub-)classification and annotation subsystem, which also uses the named entities annotated to populate a domain ontology, in order to provide a concrete application of the present work in the two areas involved (the Semantic Web and Corpus Linguistics). 3. MAIN RESULTS: ASSESSMENT OF ONTOTAG’S UNDERLYING HYPOTHESES The model developed in the present thesis tries to shed some light on (i) whether linguistic annotation tools can effectively interoperate; (ii) whether their results can be combined and integrated; and, if they can, (iii) how they can, respectively, interoperate and be combined and integrated. Accordingly, several hypotheses had to be supported (or rejected) by the development of the OntoTag model and OntoTagger (its implementation). The hypotheses underlying OntoTag are surveyed below. Only one of the hypotheses (H.6) was rejected; the other five could be confirmed. H.1 The annotations of different levels (or layers) can be integrated into a sort of overall, comprehensive, multilayer and multilevel annotation, so that their elements can complement and refer to each other. • CONFIRMED by the development of: o OntoTag’s annotation scheme, o OntoTag’s annotation architecture, o OntoTagger’s (XML, RDF, OWL) annotation schemas, o OntoTagger’s configuration. H.2 Tool-dependent annotations can be mapped onto a sort of tool-independent annotations and, thus, can be standardised. • CONFIRMED by means of the standardisation phase incorporated into OntoTag and OntoTagger for the annotations yielded by the tools. H.3 Standardisation should ease: H.3.1: The interoperation of linguistic tools. H.3.2: The comparison, combination (at the same level and layer) and integration (at different levels or layers) of annotations. • H.3 was CONFIRMED by means of the development of OntoTagger’s ontology-based configuration: o Interoperation, comparison, combination and integration of the annotations of three different linguistic tools (Connexor’s FDG, Bitext’s DataLexica and LACELL’s tagger); o Integration of EuroWordNet-based, domain-ontology-based and named entity annotations at the semantic level. o Integration of morphosyntactic, syntactic and semantic annotations. H.4 Ontologies and Semantic Web technologies (can) play a crucial role in the standardisation of linguistic annotations, by providing consensual vocabularies and standardised formats for annotation (e.g., RDF triples). • CONFIRMED by means of the development of OntoTagger’s RDF-triple-based annotation schemas. H.5 The rate of errors introduced by a linguistic tool at a given level, when annotating, can be reduced automatically by contrasting and combining its results with the ones coming from other tools, operating at the same level. However, these other tools might be built following a different technological (stochastic vs. rule-based, for example) or theoretical (dependency vs. HPS-grammar-based, for instance) approach. • CONFIRMED by the results yielded by the evaluation of OntoTagger. H.6 Each linguistic level can be managed and annotated independently. • REJECTED: OntoTagger’s experiments and the dependencies observed among the morphosyntactic annotations, and between them and the syntactic annotations. In fact, Hypothesis H.6 was already rejected when OntoTag’s ontologies were developed. We observed then that several linguistic units stand on an interface between levels, belonging thereby to both of them (such as morphosyntactic units, which belong to both the morphological level and the syntactic level). Therefore, the annotations of these levels overlap and cannot be handled independently when merged into a unique multileveled annotation. 4. OTHER MAIN RESULTS AND CONTRIBUTIONS First, interoperability is a hot topic for both the linguistic annotation community and the whole Computer Science field. The specification (and implementation) of OntoTag’s architecture for the combination and integration of linguistic (annotation) tools and annotations by means of ontologies shows a way to make these different linguistic annotation tools and annotations interoperate in practice. Second, as mentioned above, the elements involved in linguistic annotation were formalised in a set (or network) of ontologies (OntoTag’s linguistic ontologies). • On the one hand, OntoTag’s network of ontologies consists of − The Linguistic Unit Ontology (LUO), which includes a mostly hierarchical formalisation of the different types of linguistic elements (i.e., units) identifiable in a written text; − The Linguistic Attribute Ontology (LAO), which includes also a mostly hierarchical formalisation of the different types of features that characterise the linguistic units included in the LUO; − The Linguistic Value Ontology (LVO), which includes the corresponding formalisation of the different values that the attributes in the LAO can take; − The OIO (OntoTag’s Integration Ontology), which  Includes the knowledge required to link, combine and unite the knowledge represented in the LUO, the LAO and the LVO;  Can be viewed as a knowledge representation ontology that describes the most elementary vocabulary used in the area of annotation. • On the other hand, OntoTag’s ontologies incorporate the knowledge included in the different standards and recommendations for linguistic annotation released so far, such as those developed within the EAGLES and the SIMPLE European projects or by the ISO/TC 37 committee: − As far as morphosyntactic annotations are concerned, OntoTag’s ontologies formalise the terms in the EAGLES (1996a) recommendations and their corresponding terms within the ISO Morphosyntactic Annotation Framework (ISO/MAF, 2008) standard; − As for syntactic annotations, OntoTag’s ontologies incorporate the terms in the EAGLES (1996b) recommendations and their corresponding terms within the ISO Syntactic Annotation Framework (ISO/SynAF, 2010) standard draft; − Regarding semantic annotations, OntoTag’s ontologies generalise and extend the recommendations in EAGLES (1996a; 1996b) and, since no stable standards or standard drafts have been released for semantic annotation by ISO/TC 37 yet, they incorporate the terms in SIMPLE (2000) instead; − The terms coming from all these recommendations and standards were supplemented by those within the ISO Data Category Registry (ISO/DCR, 2008) and also of the ISO Linguistic Annotation Framework (ISO/LAF, 2009) standard draft when developing OntoTag’s ontologies. Third, we showed that the combination of the results of tools annotating at the same level can yield better results (both in precision and in recall) than each tool separately. In particular, 1. OntoTagger clearly outperformed two of the tools integrated into its configuration, namely DataLexica and FDG in all the combination sub-phases in which they overlapped (i.e. POS tagging, lemma annotation and morphological feature annotation). As far as the remaining tool is concerned, i.e. LACELL’s tagger, it was also outperformed by OntoTagger in POS tagging and lemma annotation, and it did not behave better than OntoTagger in the morphological feature annotation layer. 2. As an immediate result, this implies that a) This type of combination architecture configurations can be applied in order to improve significantly the accuracy of linguistic annotations; and b) Concerning the morphosyntactic level, this could be regarded as a way of constructing more robust and more accurate POS tagging systems. Fourth, Semantic Web annotations are usually performed by humans or else by machine learning systems. Both of them leave much to be desired: the former, with respect to their annotation rate; the latter, with respect to their (average) precision and recall. In this work, we showed how linguistic tools can be wrapped in order to annotate automatically Semantic Web pages using ontologies. This entails their fast, robust and accurate semantic annotation. As a way of example, as mentioned in Sub-goal 5.5, we developed a particular OntoTagger module for the recognition, classification and labelling of named entities, according to the MUC and ACE tagsets (Chinchor, 1997; Doddington et al., 2004). These tagsets were further specified by means of a domain ontology, namely the Cinema Named Entities Ontology (CNEO). This module was applied to the automatic annotation of ten different web pages containing cinema reviews (that is, around 5000 words). In addition, the named entities annotated with this module were also labelled as instances (or individuals) of the classes included in the CNEO and, then, were used to populate this domain ontology. • The statistical results obtained from the evaluation of this particular module of OntoTagger can be summarised as follows. On the one hand, as far as recall (R) is concerned, (R.1) the lowest value was 76,40% (for file 7); (R.2) the highest value was 97, 50% (for file 3); and (R.3) the average value was 88,73%. On the other hand, as far as the precision rate (P) is concerned, (P.1) its minimum was 93,75% (for file 4); (R.2) its maximum was 100% (for files 1, 5, 7, 8, 9, and 10); and (R.3) its average value was 98,99%. • These results, which apply to the tasks of named entity annotation and ontology population, are extraordinary good for both of them. They can be explained on the basis of the high accuracy of the annotations provided by OntoTagger at the lower levels (mainly at the morphosyntactic level). However, they should be conveniently qualified, since they might be too domain- and/or language-dependent. It should be further experimented how our approach works in a different domain or a different language, such as French, English, or German. • In any case, the results of this application of Human Language Technologies to Ontology Population (and, accordingly, to Ontological Engineering) seem very promising and encouraging in order for these two areas to collaborate and complement each other in the area of semantic annotation. Fifth, as shown in the State of the Art of this work, there are different approaches and models for the semantic annotation of texts, but all of them focus on a particular view of the semantic level. Clearly, all these approaches and models should be integrated in order to bear a coherent and joint semantic annotation level. OntoTag shows how (i) these semantic annotation layers could be integrated together; and (ii) they could be integrated with the annotations associated to other annotation levels. Sixth, we identified some recommendations, best practices and lessons learned for annotation standardisation, interoperation and merge. They show how standardisation (via ontologies, in this case) enables the combination, integration and interoperation of different linguistic tools and their annotations into a multilayered (or multileveled) linguistic annotation, which is one of the hot topics in the area of Linguistic Annotation. And last but not least, OntoTag’s annotation scheme and OntoTagger’s annotation schemas show a way to formalise and annotate coherently and uniformly the different units and features associated to the different levels and layers of linguistic annotation. This is a great scientific step ahead towards the global standardisation of this area, which is the aim of ISO/TC 37 (in particular, Subcommittee 4, dealing with the standardisation of linguistic annotations and resources).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract. The ASSERT project de?ned new software engineering methods and tools for the development of critical embedded real-time systems in the space domain. The ASSERT model-driven engineering process was one of the achievements of the project and is based on the concept of property- preserving model transformations. The key element of this process is that non-functional properties of the software system must be preserved during model transformations. Properties preservation is carried out through model transformations compliant with the Ravenscar Pro?le and provides a formal basis to the process. In this way, the so-called Ravenscar Computational Model is central to the whole ASSERT process. This paper describes the work done in the HWSWCO study, whose main objective has been to address the integration of the Hardware/Software co-design phase in the ASSERT process. In order to do that, non-functional properties of the software system must also be preserved during hardware synthesis. Keywords : Ada 2005, Ravenscar pro?le, Hardware/Software co-design, real- time systems, high-integrity systems, ORK

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El término imaginario, nombra el principio y el tema central de una investigación del mundo arquitectónico, necesaria para entender las condiciones alrededor de un proceso proyectual íntimo, cargado de significaciones ideológicas y simbólicas. En diferentes interpretaciones, el inconsciente colectivo y personal, científico o social, aparece en el origen de cada pensamiento y comportamiento humano, constituyendo un universo cerrado y caótico, donde todas las ideas están en constante tensión y contradicción. Por esta razón existen nociones y construcciones lógicas y coherentes que estructuran el marco de la verisimilitud y por tanto el régimen de la realidad, mediante la verdad y la verificación. Para el proyecto arquitectónico estas configuraciones se expresan en la situación del espacio, el tiempo y el cuerpo, como elementos básicos de jerarquización de la habitabilidad y de la cohabitabilidad humana. Esta tesis pretende acotar y definir un ámbito de procesos verosímiles instalados dentro del imaginario mediante el patrimonio intangible del pensamiento mítico o utópico, donde no solamente se crean envolventes del pensamiento, de iconografía o de sociedades, sino de donde también se derivan modelos rígidos y excluyentes, desde teorías basadas en la heteronormatividad y la segregación según el sexo, el género, la clase y la capacidad dentro de la diversidad funcional. La experiencia del espacio arquitectónico ha sido tradicionalmente descrita mediante palabras e imágenes: el lógos y el símbolo han sido los grandes intermediadores entre los sujetos y el habitar. Los ámbitos cotidiano y urbano se han regido por modelos y normas absolutas aplicadas universalmente y el mundo arquitectónico se ha visto estancado en la polaridad dual, entre lo público y lo privado, el dentro y el fuera, el movimiento y el reposo, el hombre y la mujer. Si el espacio-tiempo, el cuerpo y sus interpretaciones son la base para los modelos absolutistas, universalistas y perfeccionistas que han dominado el pensamiento occidental y elaborado la noción de lo “normal” en su totalidad, restando complejidad y diversidad, en la era hipermoderna ya no tiene sentido hablar en términos que no contemplen la superposición y la contradicción de la multiplicidad caótica en igualdad y en equilibrio instable. La realidad se ha visto reinventada a través de situaciones intermedias, los lugares inbetween en los espacios, tiempos, identidades y nociones presupuestas, donde se ha tergiversado el orden establecido, afectando al imaginario. La cotidianidad ha superado la arquitectura y el tiempo ha aniquilado el espacio. La conectividad, las redes y el libre acceso a la información – allá donde los haya – componen el marco que ha permitido a los sujetos subalternos emerger y empezar a consolidarse en el discurso teórico y práctico. Nuevos referentes están apareciendo en el hiper-espacio/tiempo aumentado, infringiendo todas aquellas leyes e interpretaciones impuestas para controlar los hábitos, las conductas y las personas. La casa, la ciudad y la metrópolis al vaciarse de contenidos, han dejado de cumplir funciones morales y simbólicas. Los no-lugares, los no-space, los no-time (Amann, 2011) son las condiciones radicalmente fenoménicas que reemplazan la realidad de lo vivido y activan de forma directa a los sentidos; son lugares que excitan el cuerpo como termótopos (Sloterdijk, 2002), que impulsan el crecimiento de la economía y en gran medida la multinormatividad. Sin duda alguna, aquí y ahora se requiere un nuevo modo de emplear la palabra, la imagen y la tecnología, dentro de una temporalidad efímera y eterna simultáneamente. ABSTRACT The term imaginary marks the beginning and the main topic of this research into the architectural world, presented as the necessary condition to understand the design process in its intimate layers, loaded with ideological and symbolic meanings. Through different interpretations, the unconscious, personal and collective, scientific or social, is found in the origin of every human thought and behaviour, constituting a closed chaotic universe, where all ideas are in constant tension and contradiction. This is why there are logical and coherent notions or discursive constructions which organise the context of verisimilitude and therefore the regime of reality through truth and its verification. For the architectural project, these specific configurations are associated with space, time and body as basic elements of management and hierarchization of human habitability and co-habitability. This thesis aims to demarcate and define a field of verisimilar processes installed in the imaginary, through the intangible heritage of mythical or utopian thinking, where not only enclosures of thought, iconography or utopian ideals are created, but from where rigid and exclusive models are derived as well, from theories based on heteronormativity and segregation by sex, gender, class and functional diversity. The experience of the architectural space has been described traditionally through words and images: the language and the symbol have been intermediating between the user and his habitat. Everyday life and urban interactions have been governed by absolute, universally applied, models or standards, therefore the architectural world has been stalled in a constant dual polarity between the public and the private, the inside and the outside, the movement and the repose, the man and the woman. Certainly, if the space-time notion, along with the theorization of the body, are the basis for absolutist, universalist and perfectionist models that have dominated western thought and developed the concept of “normal” in its totality, deducting all complexity and diversity, in the hypermodern era it makes no longer sense to speak in terms that ignore the overlap and contradiction of the chaotic multiplicity that characterises equality and unstable balance. Reality has been reinvented through intermediate situations, the in-between spaces, time, identities, or other presupposed notions. The order of truth has been distorted, affecting and transforming the contemporary imaginary. Everyday practices have surpassed the architectural design and time has annihilated space. Connectivity, networks, free access to information -wherever it exists-, compose the framework that has allowed subaltern subjectivity to emerge and begin to consolidate into main theoretical and practical discourses. New models are appearing in the augmented hyper-space/ time, transgressing any rule and interpretation imposed to control habits, behaviours and people. The house, the city and the metropolis are empty of content; they no longer fulfil moral and symbolic functions. The non-places, non-space, non-time (Amann, 2011) are radically phenomenal conditions that replace the reality of the lived experience and activate the senses as places that excite the body, thermotopos (Sloterdijk, 2002), which boost economic growth and to a considerable extent the multinormativity. Undoubtedly, what is required here and now is a new way of employing the word, the image and the technology within an ephemeral yet eternal temporality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UML is widely accepted as the standard for representing the various software artifacts generated by a development process. For this reason, there have been attempts to use this language to represent the software architecture of systems as well. Unfortunately, these attempts have ended in the same representations (boxes and lines) already criticized by the software architecture community.In this work we propose an extension to the UML metamodel that is able to represent the syntactics and semantics of the C3 architectural style. This style is derived from C2. The modifications to define C3 are described in section 4. This proposal is innovative regarding UML extensions for software architectures, since previous proposals where based on light extensions to the UML meta-model, while we propose a heavyweight extension of the metamodel. On the other hand, this proposal is less ambitious than previous proposals, since we do not want to represent in UML any architectural style, but only one: C3.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ML 1.4 is widely accepted as the standard for representing the various software artifacts generated by a development process. For this reason, there have been attempts to use this language to represent the software architec- ture of systems as well. Unfortunately, these attempts have ended in representa- tions (boxes and lines) already criticized by the software architecture commu- nity. Recently, OMG has published a draft that will constitute the future UML 2.0 specification. In this paper we compare the capacities of UML 1.4 and UML 2.0 to describe software architectures. In particular, we study extensions of both UML versions to describe the static view of the C3 architectural style (a simplification of the C2 style). One of the results of this study is the difficulties found when using the UML 2.0 metamodel to describe the concept of connector in a software architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente Trabajo de Fin de Grado (TFG) es el resultado de la necesidad de la seguridad en la construcción del software ya que es uno de los mayores problemas con que se enfrenta hoy la industria debido a la baja calidad de la misma tanto en software de Sistema Operativo, como empotrado y de aplicaciones. La creciente dependencia de software para que se hagan trabajos críticos significa que el valor del software ya no reside únicamente en su capacidad para mejorar o mantener la productividad y la eficiencia. En lugar de ello, su valor también se deriva de su capacidad para continuar operando de forma fiable incluso de cara de los eventos que la amenazan. La capacidad de confiar en que el software seguirá siendo fiable en cualquier circunstancia, con un nivel de confianza justificada, es el objetivo de la seguridad del software. Seguridad del software es importante porque muchas funciones críticas son completamente dependientes del software. Esto hace que el software sea un objetivo de valor muy alto para los atacantes, cuyos motivos pueden ser maliciosos, penales, contenciosos, competitivos, o de naturaleza terrorista. Existen fuentes muy importantes de mejores prácticas, métodos y herramientas para mejorar desde los requisitos en sus aspectos no funcionales, ciclo de vida del software seguro, pasando por la dirección de proyectos hasta su desarrollo, pruebas y despliegue que debe ser tenido en cuenta por los desarrolladores. Este trabajo se centra fundamentalmente en elaborar una guía de mejores prácticas con la información existente CERT, CMMI, Mitre, Cigital, HP, y otras fuentes. También se plantea desarrollar un caso práctico sobre una aplicación dinámica o estática con el fin de explotar sus vulnerabilidades.---ABSTRACT---This Final Project Grade (TFG) is the result of the need for security in software construction as it is one of the biggest problems facing the industry today due to the low quality of it both OS software, embedded software and applications software. The increasing reliance on software for critical jobs means that the value of the software no longer resides solely in its capacity to improve or maintain productivity and efficiency. Instead, its value also stems from its ability to continue to operate reliably even when facing events that threaten it. The ability to trust that the software will remain reliable in all circumstances, with justified confidence level is the goal of software security. The security in software is important because many critical functions are completely dependent of the software. This makes the software to be a very high value target for attackers, whose motives may be by a malicious, by crime, for litigating, by competitiveness or by a terrorist nature. There are very important sources of best practices, methods and tools to improve the requirements in their non-functional aspects, the software life cycle with security in mind, from project management to its phases (development, testing and deployment) which should be taken into account by the developers. This paper focuses primarily on developing a best practice guide with existing information from CERT, CMMI, Mitre, Cigital, HP, and other organizations. It also aims to develop a case study on a dynamic or static application in order to exploit their vulnerabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Business information has become a critical asset for companies and it has even more value when obtained and exploited in real time. This paper analyses how to integrate this information into an existing banking Enterprise Architecture, following an event-driven approach, and entails the study of three main issues: the definition of business events, the specification of a reference architecture, which identifies the specific integration points, and the description of a governance approach to manage the new elements. All the proposed solutions have been validated with a proof-of-concept test bed in an open source environment. It is based on a case study of the banking sector that allows an operational validation to be carried out, as well as ensuring compliance with non-functional requirements. We have focused these requirements on performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This summary presents a methodology for supporting the development of AOSAs following the MDD paradigm. This new methodology is called PRISMA and allows the code generation from models which specify functional and non-functional requirements.