957 resultados para Non ideal dynamic system
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"Aeronautical Research Laboratory, Contract No. AF 33(616)-2797, Project 7060."
Resumo:
Architecture and learning algorithm of self-learning spiking neural network in fuzzy clustering task are outlined. Fuzzy receptive neurons for pulse-position transformation of input data are considered. It is proposed to treat a spiking neural network in terms of classical automatic control theory apparatus based on the Laplace transform. It is shown that synapse functioning can be easily modeled by a second order damped response unit. Spiking neuron soma is presented as a threshold detection unit. Thus, the proposed fuzzy spiking neural network is an analog-digital nonlinear pulse-position dynamic system. It is demonstrated how fuzzy probabilistic and possibilistic clustering approaches can be implemented on the base of the presented spiking neural network.
Resumo:
2000 Mathematics Subject Classification: Primary 47A48, 93B28, 47A65; Secondary 34C94.
Resumo:
Deux thématiques importantes des technologies de la santé: la pratique médicale fondée sur des preuves probantes et l’évaluation des interventions en médecine sont fondées sur une approche positiviste et une conception mécaniste des organisations en santé. Dans ce mémoire, nous soulevons l’hypothèse selon laquelle les théories de la complexité et la systémique permettent une conceptualisation différente de ces deux aspects de la gouvernance clinique d’une unité de Soins Intensifs Chirurgicaux (SIC), qui est considérée comme un système adaptatif dynamique non linéaire qui nécessite une approche systémique de la cognition. L’étude de cas d’une unité de SIC, permet de démontrer par de nombreux exemples et des analyses de micro-situations, toutes les caractéristiques de la complexité des patients critiques et instables et de la structure organisationnelle des SIC. Après une critique épistémologique de l’Evidence-Based Medicine nous proposons une pratique fondée sur des raisonnements cliniques alliant l’abduction, l’herméneutique et la systémique aux SIC. En nous inspirant des travaux de Karl Weick, nous suggérons aussi de repenser l’évaluation des modes d’interventions cliniques en s’inspirant de la notion d’organisation de haute fiabilité pour mettre en place les conditions nécessaires à l’amélioration des pratiques aux SIC.
Resumo:
We investigate numerically the dynamical behavior of a non-ideal mechanical system consisting of a vibrating cart containing a particle which can oscillate back and forth colliding with walls carved in the cart. This system represents an impact damper for controlling high-amplitude vibrations and chaotic motion. The motion of the cart is induced by an in-board non-ideal motor driving an unbalanced rotor. We study the phase space of the cart and the bouncing particle, in particular the intertwined smooth and fractal basin boundary structure. The control of the chaotic motion of the cart due to the particle impacts is also investigated. Our numerical results suggests that impact dampers of small masses are effective to suppress chaos, but they also increase the final-state sensitivity of the system in its phase space. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The present study was done with two different servo-systems. In the first system, a servo-hydraulic system was identified and then controlled by a fuzzy gainscheduling controller. The second servo-system, an electro-magnetic linear motor in suppressing the mechanical vibration and position tracking of a reference model are studied by using a neural network and an adaptive backstepping controller respectively. Followings are some descriptions of research methods. Electro Hydraulic Servo Systems (EHSS) are commonly used in industry. These kinds of systems are nonlinearin nature and their dynamic equations have several unknown parameters.System identification is a prerequisite to analysis of a dynamic system. One of the most promising novel evolutionary algorithms is the Differential Evolution (DE) for solving global optimization problems. In the study, the DE algorithm is proposed for handling nonlinear constraint functionswith boundary limits of variables to find the best parameters of a servo-hydraulic system with flexible load. The DE guarantees fast speed convergence and accurate solutions regardless the initial conditions of parameters. The control of hydraulic servo-systems has been the focus ofintense research over the past decades. These kinds of systems are nonlinear in nature and generally difficult to control. Since changing system parameters using the same gains will cause overshoot or even loss of system stability. The highly non-linear behaviour of these devices makes them ideal subjects for applying different types of sophisticated controllers. The study is concerned with a second order model reference to positioning control of a flexible load servo-hydraulic system using fuzzy gainscheduling. In the present research, to compensate the lack of dampingin a hydraulic system, an acceleration feedback was used. To compare the results, a pcontroller with feed-forward acceleration and different gains in extension and retraction is used. The design procedure for the controller and experimental results are discussed. The results suggest that using the fuzzy gain-scheduling controller decrease the error of position reference tracking. The second part of research was done on a PermanentMagnet Linear Synchronous Motor (PMLSM). In this study, a recurrent neural network compensator for suppressing mechanical vibration in PMLSM with a flexible load is studied. The linear motor is controlled by a conventional PI velocity controller, and the vibration of the flexible mechanism is suppressed by using a hybrid recurrent neural network. The differential evolution strategy and Kalman filter method are used to avoid the local minimum problem, and estimate the states of system respectively. The proposed control method is firstly designed by using non-linear simulation model built in Matlab Simulink and then implemented in practical test rig. The proposed method works satisfactorily and suppresses the vibration successfully. In the last part of research, a nonlinear load control method is developed and implemented for a PMLSM with a flexible load. The purpose of the controller is to track a flexible load to the desired position reference as fast as possible and without awkward oscillation. The control method is based on an adaptive backstepping algorithm whose stability is ensured by the Lyapunov stability theorem. The states of the system needed in the controller are estimated by using the Kalman filter. The proposed controller is implemented and tested in a linear motor test drive and responses are presented.
Resumo:
The present paper studies a system comprised of two blocks connected by springs and dampers, and a DC motor with limited power supply fixed on a block, characterizing a non-ideal problem. This DC motor exciting the system causes interactions between the motor and the structure supporting it. Because of that, the non-ideal mathematical formulation of the problem has one and a half extra degree of freedom than the ideal one. A suitable choice of physical parameters leads to internal resonance conditions, that is, its natural frequencies are multiple of each other, by a known integer quantity. The purpose here is to study the dynamic behavior of the system using an analytical method based on perturbation techniques. The literature shows that the averaging method is the more flexible method concerning non-ideal problems. Summarizing, an steady state solution in amplitude and phase coordinates was obtained with averaging method showing the dependence of the structure amplitudes with the rotation frequency of the motor. Moreover, this solution shows that on of the amplitude coordinates has influence in the determination of the stationary rotation frequency. The analytical solution obtained shows the presence of the rotation frequency in expressions representing the oscillations of the structure, and the presence of amplitude coordinates in expressions describing the dynamic motion of the DC motor. These characteristics show the influence not only of the motor on structure but also of the response of the structure on dynamical behavior of the motor. Copyright © 2005 by ASME.
Resumo:
Pós-graduação em Física - IGCE
Resumo:
Pós-graduação em Engenharia Mecânica - FEB
Resumo:
The classic conservative approach for thermal process design can lead to over-processing, especially for laminar flow, when a significant distribution of temperature and of residence time occurs. In order to optimize quality retention, a more comprehensive model is required. A model comprising differential equations for mass and heat transfer is proposed for the simulation of the continuous thermal processing of a non-Newtonian food in a tubular system. The model takes into account the contribution from heating and cooling sections, the heat exchange with the ambient air and effective diffusion associated with non-ideal laminar flow. The study case of soursop juice processing was used to test the model. Various simulations were performed to evaluate the effect of the model assumptions. An expressive difference in the predicted lethality was observed between the classic approach and the proposed model. The main advantage of the model is its flexibility to represent different aspects with a small computational time, making it suitable for process evaluation and design. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.