932 resultados para Noise pollution -- Catalonia -- Sarrià de Ter
Resumo:
Noise is an intrinsic feature of population dynamics and plays a crucial role in oscillations called phase-forgetting quasicycles by converting damped into sustained oscillations. This function of noise becomes evident when considering Langevin equations whose deterministic part yields only damped oscillations. We formulate here a consistent and systematic approach to population dynamics, leading to a Fokker-Planck equation and the associate Langevin equations in accordance with this conceptual framework, founded on stochastic lattice-gas models that describe spatially structured predator-prey systems. Langevin equations in the population densities and predator-prey pair density are derived in two stages. First, a birth-and-death stochastic process in the space of prey and predator numbers and predator-prey pair number is obtained by a contraction method that reduces the degrees of freedom. Second, a van Kampen expansion in the inverse of system size is then performed to get the Fokker-Planck equation. We also study the time correlation function, the asymptotic behavior of which is used to characterize the transition from the cyclic coexistence of species to the ordinary coexistence.
Sensitivity to noise and ergodicity of an assembly line of cellular automata that classifies density
Resumo:
We investigate the sensitivity of the composite cellular automaton of H. Fuks [Phys. Rev. E 55, R2081 (1997)] to noise and assess the density classification performance of the resulting probabilistic cellular automaton (PCA) numerically. We conclude that the composite PCA performs the density classification task reliably only up to very small levels of noise. In particular, it cannot outperform the noisy Gacs-Kurdyumov-Levin automaton, an imperfect classifier, for any level of noise. While the original composite CA is nonergodic, analyses of relaxation times indicate that its noisy version is an ergodic automaton, with the relaxation times decaying algebraically over an extended range of parameters with an exponent very close (possibly equal) to the mean-field value.
Resumo:
Positional information in developing embryos is specified by spatial gradients of transcriptional regulators. One of the classic systems for studying this is the activation of the hunchback (hb) gene in early fruit fly (Drosophila) segmentation by the maternally-derived gradient of the Bicoid (Bcd) protein. Gene regulation is subject to intrinsic noise which can produce variable expression. This variability must be constrained in the highly reproducible and coordinated events of development. We identify means by which noise is controlled during gene expression by characterizing the dependence of hb mRNA and protein output noise on hb promoter structure and transcriptional dynamics. We use a stochastic model of the hb promoter in which the number and strength of Bcd and Hb (self-regulatory) binding sites can be varied. Model parameters are fit to data from WT embryos, the self-regulation mutant hb(14F), and lacZ reporter constructs using different portions of the hb promoter. We have corroborated model noise predictions experimentally. The results indicate that WT (self-regulatory) Hb output noise is predominantly dependent on the transcription and translation dynamics of its own expression, rather than on Bcd fluctuations. The constructs and mutant, which lack self-regulation, indicate that the multiple Bcd binding sites in the hb promoter (and their strengths) also play a role in buffering noise. The model is robust to the variation in Bcd binding site number across a number of fly species. This study identifies particular ways in which promoter structure and regulatory dynamics reduce hb output noise. Insofar as many of these are common features of genes (e. g. multiple regulatory sites, cooperativity, self-feedback), the current results contribute to the general understanding of the reproducibility and determinacy of spatial patterning in early development.
Resumo:
We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analytical predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.
Resumo:
Using nonequilibrium Green's functions we calculate the spin-polarized current and shot noise in a ferromagnet-quantum-dot-ferromagnet system. Both parallel (P) and antiparallel (AP) magnetic configurations are considered. Coulomb interaction and coherent spin flip (similar to a transverse magnetic field) are taken into account within the dot. We find that the interplay between Coulomb interaction and spin accumulation in the dot can result in a bias-dependent current polarization p. In particular, p can be suppressed in the P alignment and enhanced in the AP case depending on the bias voltage. The coherent spin flip can also result in a switch of the current polarization from the emitter to the collector lead. Interestingly, for a particular set of parameters it is possible to have a polarized current in the collector and an unpolarized current in the emitter lead. We also found a suppression of the Fano factor to values well below 0.5.
Resumo:
The goal of this paper is to study and propose a new technique for noise reduction used during the reconstruction of speech signals, particularly for biomedical applications. The proposed method is based on Kalman filtering in the time domain combined with spectral subtraction. Comparison with discrete Kalman filter in the frequency domain shows better performance of the proposed technique. The performance is evaluated by using the segmental signal-to-noise ratio and the Itakura-Saito`s distance. Results have shown that Kalman`s filter in time combined with spectral subtraction is more robust and efficient, improving the Itakura-Saito`s distance by up to four times. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Active control solutions appear to be a feasible approach to cope with the steadily increasing requirements for noise reduction in the transportation industry. Active controllers tend to be designed with a target on the sound pressure level reduction. However, the perceived control efficiency for the occupants can be more accurately assessed if psychoacoustic metrics can be taken into account. Therefore, this paper aims to evaluate, numerically and experimentally, the effect of a feedback controller on the sound quality of a vehicle mockup excited with engine noise. The proposed simulation scheme is described and experimentally validated. The engine excitation is provided by a sound quality equivalent engine simulator, running on a real-time platform that delivers harmonic excitation in function of the driving condition. The controller performance is evaluated in terms of specific loudness and roughness. It is shown that the use of a quite simple control strategy, such as a velocity feedback, can result in satisfactory loudness reduction with slightly spread roughness, improving the overall perception of the engine sound. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Sigma phase is a deleterious one which can be formed in duplex stainless steels during heat treatment or welding. Aiming to accompany this transformation, ferrite and sigma percentage and hardness were measured on samples of a UNS S31803 duplex stainless steel submitted to heat treatment. These results were compared to measurements obtained from ultrasound and eddy current techniques, i.e., velocity and impedance, respectively. Additionally, backscattered signals produced by wave propagation were acquired during ultrasonic inspection as well as magnetic Barkhausen noise during magnetic inspection. Both signal types were processed via a combination of detrended-fluctuation analysis (DFA) and principal component analysis (PCA). The techniques used were proven to be sensitive to changes in samples related to sigma phase formation due to heat treatment. Furthermore, there is an advantage using these methods since they are nondestructive. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper reports the use of a non-destructive, continuous magnetic Barkhausen noise (CMBN) technique to investigate the size and thickness of volumetric defects, in a 1070 steel. The magnetic behavior of the used probe was analyzed by numerical simulation, using the finite element method (FEM). Results indicated that the presence of a ferrite coil core in the probe favors MBN emissions. The samples were scanned with different speeds and probe configurations to determine the effect of the flaw on the CMBN signal amplitude. A moving smooth window, based on a second-order statistical moment, was used for analyzing the time signal. The results show the technique`s good repeatability, and high capacity for detection of this type of defect. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We present a method to simulate the Magnetic Barkhausen Noise using the Random Field Ising Model with magnetic long-range interaction. The method allows calculating the magnetic flux density behavior in particular sections of the lattice reticule. The results show an internal demagnetizing effect that proceeds from the magnetic long-range interactions. This demagnetizing effect induces the appearing of a magnetic pattern in the region of magnetic avalanches. When compared with the traditional method, the proposed numerical procedure neatly reduces computational costs of simulation. (c) 2008 Published by Elsevier B.V.
Resumo:
The magnetic Barkhausen energy in the rolling and transversal directions of AISI/SAE 1070 annealed surfaces is studied. The measurements were made in the samples under applied tension in the elastic-plastic region for different angular directions. The outcomes evidence that the magnetic anisotropy coefficient can be used to characterize the linear and nonlinear elastic limits of the material tinder tensile tresses. The results also show that the area of the curve corresponding to the angular dependence of the number of Barkhausen jumps with average energy presents a maximum value that corresponds to the elastic limit of the sample. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The present work shows measurements of the Magnetic Barkhausen Noise (MBN) in commercial AISI/SAE 1045 and ASTM 36 steel deformed samples. The correlation between the MBN root mean square, Barkhausen signal profile and MBN power spectrum with the plastic deformation is established. The results show that the power spectral density of the Barkhausen signal is more effective as nondestructive evaluator than root mean square of Barkhausen signal. The Outcomes also suggest the presence of unbalanced tensions between the surface and the bulk of sample due to the presence of plastic deformation.
Resumo:
The present work presents the measurements of the magnetic Barkhausen noise (MBN) in ASTM 36 steel samples around a pit under plastic deformation. The contour maps obtained from these Barkhausen noise measurements are compared with the finite element analysis of the ideal plastic deformation. Also, a parameter of the Barkhausen signal to detect the plastic deformation around the pit in ASTM 36 steel is obtained. Additionally to that, we propose another MBN parameter to estimate the pit width using the Barkhausen noise. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Before one models the effect of plastic deformation on magnetoacoustic emission (MAE), one must first treat non-180 degrees domain wall motion. In this paper, we take the Alessandro-Beatrice-Bertotti-Montorsi (ABBM) model and modify it to treat non-180 degrees wall motion. We then insert a modified stress-dependent Jiles-Atherton model, which treats plastic deformation, into the modified ABBM model to treat MAE and magnetic Barkhausen noise (HBN). In fitting the dependence of these quantities on plastic deformation, we apply a model for when deformation gets into the stage where dislocation tangles are formed, noting two chief effects, one due to increased density of emission centers owing to increased dislocation density, and the other due to a more gentle increase in the residual stress in the vicinity of the dislocation tangles as deformation is increased.
Resumo:
The impact of the titanium nitride (TIN) gate electrode thickness has been investigated in n and p channel SOI multiple gate field effect transistors (MuGFETs) through low frequency noise charge pumping and static measurements as well as capacitance-voltage curves The results suggest that a thicker TIN metal gate electrode gives rise to a higher EOT a lower mobility and a higher interface trap density The devices have also been studied for different back gate biases where the GIFBE onset occurs at lower front-gate voltage for thinner TIN metal gate thickness and at higher V(GF) In addition it is demonstrated that post deposition nitridation of the MOCVD HfSiO gate dielectric exhibits an unexpected trend with TIN gate electrode thickness where a continuous variation of EOT and an increase on the degradation of the interface quality are observed (C) 2010 Elsevier Ltd All rights reserved