991 resultados para Nitrogen recycling nutrition
Resumo:
O objetivo deste trabalho foi avaliar o efeito da aplicação superficial de lodos de esgoto, lama cal, escória de aciaria e calcário sobre o estado nutricional e a produtividade da soja, em sistema plantio direto. O delineamento foi o de blocos ao acaso em arranjo fatorial 4x4+1, constituído por quatro tratamentos - resíduos de lodo de esgoto centrifugado (LC) e de biodigestor (LB), escória de aciaria (E) e lama cal (Lcal) - nas doses 0, 2, 4 e 8 Mg ha-1, mais o controle com 2 Mg ha-1 de calcário. As plantas de soja apresentaram maior concentração de nitrogênio, fósforo e cálcio, em 2003, 2004 e 2005, e de potássio, em 2003 e 2004, em razão dos tratamentos LC, LB, E, Lcal e calagem. A produtividade da soja foi favorecida pela aplicação dos tratamentos no sistema plantio direto, em 2003, 2004 e 2005. O fósforo, e o cálcio contribuíram para o aumento da produtividade da soja em 2003 e 2004.
Resumo:
This study aimed to evaluate the effect of substituting chemical nitrogen (N) fertilization for equivalent N levels from sewage sludge of Wastewater Treatment Plant (WTP) on sunflower plant development. Nutrient levels in physiologically mature leaves and seeds, besides nutrient exportation during a 130-day assay, were also assessed. The experiment was carried out in 100 m(2) permanent plots at Sao Manuel Farm, which belongs to School of Agronomical Sciences, São Paulo State University-UNESP, Botncatu, São Paulo State, Brazil. The farm is located in the municipality of Sao Manuel, São Paulo State. Experimental design was in randomized blocks including 5 treatments and 5 replicates. Treatments were: T1 - chemical N fertilization according to the recommendation for the culture; T2 - 50% N from sewage sludge and 50% N from chemical fertilization; T3 - 100% N from sewage sludge; T4 - 150% N from sewage sludge; T5 - 200% N from sewage sludge. For all treatments, equal amounts of P and K fertilization were applied. Treatments differed for plant height from 21 to 64 days, stern diameter from 28 to 57 days, and leaf number from 21 to 38 days. Seed nutrient levels slightly varied; however, the quantities of exported N, P, Mg, Fe and Zn varied as sewage sludge levels increased.
Resumo:
The effects of nitrogen availability on growth and photosynthesis were followed in plants of sunflower (Helianthus annuus L., var. CATISSOL-01) grown in the greenhouse under natural photoperiod. The sunflower plants were grown in vermiculite under two contrasting nitrogen supply, with nitrogen supplied as ammonium nitrate. Higher nitrogen concentration resulted in higher shoot dry matter production per plant and the effect was apparent from 29 days after sowing (DAS). The difference in dry matter production was mainly attributed to the effect of nitrogen on leaf production and on individual leaf dry matter. The specific leaf weight (SLW) was not affected by the nitrogen supply. The photosynthetic CO2 assimilation (A) of the target leaves was remarkably improved by high nitrogen nutrition. However, irrespective of nitrogen supply, the decline in photosynthetic CO2 assimilation occurred before the end of leaf growth. Although nitrogen did not change significantly stomatal conductance (gs), high-N grown plants had lower intercellular CO2 concentration (C-i) when compared with low-N grown plants. Transpiration rate (E) was increased in high-N grown plants only at the beginning of leaf growth. However, this not resulted in lower intrinsic water use efficiency (WUE). (C) 2004 Elsevier B.V.. All rights reserved.
Resumo:
Potassium (K) is required in high doses by the banana (Musa sp.) plant and interacts with other nutrient elements in which banana tissues are maintained under in vitro condition as a consequence modifications in the plant metabolism take place mainly in nitrogen (N) compounds, such as proteins, amino acids, and secondary compounds. When K is present in concentrations lower than that required, diamines such as putrescine and poliamines are formed. This metabolic disorder can also be correlated with the presence of different inorganic N forms, such as nitrate (NO3) and ammonium (NH4), and the ratios between both ions as well. In order to follow the physiological performance of the interrelationships, K/putrescine and of the NO3/NH4 ratio in the tissue of banana vitroplantlets, shoot apex of two banana cvs. Nanica and Prata Ana were maintained in modified MS medium in the presence of six different doses of K: 5, 10, 15, 20, 25, and 30 mM. After the period of tissue proliferation the cultures were transferred to rooting media containing the same different K doses. Dry matter, K, putrescine, and spermidine contents and their accumulation were determined in the shoots and roots of the vitroplantlets and in the shoot apex of the explant donor cultivar as well as the corresponding values for the whole vitroplantlets calculated. The data were statistically analyzed. The contents and accumulations of putrescine and spermidine in banana tissues were enhanced as K concentration decreased in the medium: four times (0.19% of the dry matter) for cv. Nanica and eight times (0.25% of the dry matter) for cv. Prata Ana. This behavior was not only related to the K depletion but to the NO3/NH4 ratio as well.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Although bromeliads are believed to obtain nutrients from debris deposited by animals in their rosettes, there is little evidence to support this assumption. Using stable isotope methods, we found that the Neotropical jumping spider Psecas chapoda (Salticidae), which lives strictly associated with the terrestrial bromeliad Bromelia balansae, contributed 18% of the total nitrogen of its host plant in a greenhouse experiment. In a one-year field experiment, plants with spiders produced leaves 15% longer than plants from which the spiders were excluded. This is the first study to show nutrient provisioning in a spider-plant system. Because several animal species live strictly associated with bromeliad rosettes, this type of facultative mutualism involving the Bromeliaceac may be more common than previously thought.
Resumo:
Peanut response to lime has been associated to calcium (Ca) nutrition, but a higher nitrogen (N) uptake has been observed in limed plots probably due to an increase in molybdenum (Mo) availability. A two-year experiment was conducted to study the effects of Mo, cobalt (Co), and liming on peanut yields and N nutrition. Peanut seeds were treated with Mo and/or Co and grown in soil with base saturation about 13, 41, 57, and 71%. There was no effect of seed treatment with Co on peanut yields or N nutrition. Liming and Mo application increased N contents in the leaves. Nitrogen uptake was increased by Mo and liming in cv. Tatu and only by liming in cv. Tupa. Manganese (Mn) contents in the leaves were decreased by liming. The higher yields were observed when the Ca/Mn ratio in the leaves was above 25. In acid soils, low availability of Mo and Mn toxicity can impair N acquisition by peanut plants and decrease grain yields.
Resumo:
Winter cover crops can affect N nutrition of the following maize crop. Although legumes have been recommend for maize rotations, in tropical areas grasses may be more interesting because they provide a longer protection of soil surface. Legumes can add N to the system and grasses can compete with maize for the available nutrient. An experiment was conducted in Botucatu, São Paulo State, Brazil, to study N dynamics in the soil surface straw-maize system as affected by N fertilization management and species included in the no-till rotation. Treatments were fallow, black oat (Avena strigosa), pearl millet (Pennisetum glaucum), white lupins (Lupinus albus), black oat fertilized with N. and pearl millet fertilized with N. Maize was grown afterwards in the same plots, receiving 0.0, 60.0 and 120.0 kg ha(-1) of N sidedressed 30 days after plant emergence. Soil, straw and maize samples were taken periodically. The highest corn yields were observed when it was cropped after pearl millet fertilized with N. Nitrogen side dressed application up to 120 kg ha(-1) was not able to avoid corn yield decrease caused by black oat. Grasses can be recommended in maize rotations in tropical areas, provided they receive nitrogen fertilizer and show no allelopathy. Due to its higher ON ratio and dry matter yield they are better than legumes, protecting the soil surface for a longer period. Pearl millet is particularly interesting because it enhances N use efficiency by the following maize crop. For a better N availability/demand synchronism, the cover crops should be desiccated right before maize planting.
Resumo:
A good cover crop should have a vigorous early development and a high potential for nutrient uptake that can be made available to the next crop. In tropical areas with relatively dry winters drought tolerance is also very important. An experiment was conducted to evaluate the early development and nutrition of six species used as cover crops as affected by sub-superficial compaction of the soil. The plants (oats, pigeon pea, pearl millet, black mucuna, grain sorghum, and blue lupin) were grown in pots filled with soil subjected to different subsurface compaction levels (bulk densities of 1.12, 1.16, and 1.60 mg m(-3)) for 39 days. The pots had an internal diameter of 10 cm and were 33.5 cm deep. Grasses were more sensitive to soil compaction than leguminous plants during the initial development. Irrespective of compaction rates, pearl millet and grain sorghum were more efficient in recycling nutrients. These two species proved to be more appropriate as cover crops in tropical regions with dry winters, especially if planted shortly before spring.
Resumo:
The effect of different doses of nitrogen (N) on gas exchange, relative chlorophyll (Chl) amount, and the content of N in the aerial biomass of lisianthus was evaluated. The treatments consisted of six different concentrations of N (50, 100, 150, 200, 250, and 300 g m(-3) noted as N-50, N-100, N-150, N-200, N-250, and N-300, respectively), applied through the fertirrigation technique. N-250 and N-300 induced increase in the contents of foliar Chl and N in the aerial biomass, that in turn contributed to an increase of photosynthetic activity in lisianthus.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Forage plants, particularly the Brachiaria genus, are the main source of nutrients for cattle and are at times the only feed offered. The concentration of elements in the plant is related to the soil, fertilization, climate, season, variety, and cultural practices. An experiment on dystrophic Red-Yellow Latosol soil in Aracatuba, São Paulo was performed to evaluate the effects of the doses and sources of nitrogen fertilizers on the chemical properties of the soil and the dry matter yield of the grass Brachiaria brizantha cv. Xaraes. A randomized block design was employed involving three replicates in a 3 x 3 factorial, with three doses (100, 200 and 400 kg ha(-1) year(-1)) and three sources (Ajifer (R) L40, ammonium sulfate and urea) of nitrogen and a control treatment without nitrogen (zero). The greatest effects on the chemical properties of the soil as a function of nitrogen fertilization in the Xaraes grass were observed in the topsoil. The use of Ajifer (R) L40 and ammonium sulfate as sources of nitrogen had similar effects, with an increase in the sulfur content and a reduction in the soil pH at the superficial layer. The use of the fertilizers Ajifer (R) L40, ammonium sulfate and urea did not affect the micronutrient contents, except for Fe and Mn, and did not alter the sodium concentration or electrical conductivity of the soil. The dry matter yield of Xaraes grass was similar for all three nitrogen sources.
Resumo:
A field experiment was carried out in São Paulo State, Brazil, with the objective of investigating the response of 'Nanicao' banana (Musa AAA Cavendish subgroup) to nitrogen and potassium fertilization under irrigated and non-irrigated conditions during two crop seasons. The effects of cropping on some soil chemical properties were also investigated. A split-plot design was used with irrigation (micro-sprinkler) and no irrigation applied to main plots, and a combination of four rates of N (0, 200, 400 and 800 kg N ha-1) and K (0, 300, 600 and 900 kg K2O ha-1) as the sub-plot treatments. Irrigation caused a significant increase in fruit yield and determined the response to N and K fertilizers. In spite of a high level of exchangeable K, a positive response to K application was observed on the plant crop in non-irrigated plants. Fruit yield was impaired by N application in the plant crop (1st cycle). A positive response to N application was observed in the 2nd cycle. Soil pH decreased with increasing N rates. Exchangeable K was significantly reduced due to crop exhaustion.