985 resultados para Nitrogen compounds.
Resumo:
Quantum chemical calculations based on DFT method were performed on three polydentate Schiff base compounds (PSCs) used as corrosion inhibitors for iron in acid media to determine the relationship between the molecular structure of PSC and inhibition efficiency. The structural parameters, such as the frontier molecular orbital energy HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital), the charge distribution of the studied inhibitors, the absolute electronegativity (chi) values, and the fraction of electrons (Delta N) transfer from inhibitors to iron, were also calculated and correlated with inhibition efficiencies. The results showed that the inhibition efficiency of PSCs increased with the increase in E-HOMO and decrease in E-LUMO-E-HOMO; and the areas containing N atoms are most possible sites for bonding the metal iron surface by donating electrons to the metal. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Effects of increased ammonia and/or arginine absorption across the portal-drained viscera (PDV) on net splanchnic (PDV and liver) metabolism of nitrogenous compounds and urinary N excretion were investigated in six cathetenzed Hereford x Angus steers (501 +/- 1 kg BW) fed a 75% alfalfa:25% (as-fed basis) corn-soybean meal diet (0.523 MJ of ME/[kg BW0.15.d]) every 2 h without (27.0 g of N/kg of dietary DM) and with 20 g of urea/kg of dietary DM (35.7 g of N/kg of dietary DM) in a split-plot design. Net splanchnic flux measurements were obtained immediately before beginning and ending a 72-h mesenteric vein infusion of L-arginine (15 mmol/h). For 3 d before and during arginine infusion, daily urine voided was measured and analyzed for N composition. Feeding urea increased PDV absorption (P < 0.01) and hepatic removal (P < 0.01) of ammonia N, accounting for 80% of increased hepatic urea N output (P < 0.01). Numerical increases in net hepatic removal of AA N could account for the remaining portion of increased hepatic urea N output. Arginine infusion increased hepatic arginine removal (P < 0.01) and hepatic urea N output (P < 0.03) and switched hepatic ornithine flux from net uptake to net output (P < 0.01), but numerical changes in net hepatic removal of ammonia and AA N could not account fully for the increase in hepatic urea N output. Increases in urine N excretion equaled quantities of N fed as urea or infused as arginine. Estimated salivary urea N excretion was not changed by either treatment. Urea cycle regulation occurs via a complex interaction of mechanisms and requires N sources other than ammonia, but the effect of increased ammonia absorption on hepatic catabolism of individual AA in the present study was not significant.
Resumo:
The cyanate-bridged cyclopalladated compound [Pd(N,C-dmba)(mu-NCO)](2) (1) (dmba = PhCH2NMe2) reacts in CH2Cl2 with 2,3-lutidine (2,3- lut), 3,4-lutidine (3,4-lut), 2,2'-bipyridine (2,2'-bipy) and 4,4'-bipyridine (4,4'-bipy), to give [Pd(N, C-dmba)(NCO)(2,3-lut)] (2), [Pd(N,C-dmba)(NCO)(3,4-lut)] (3), [{Pd(N,C-dmba)(NCO)}(2)(mu-2,2'-bipy)] .CH2Cl2 (4) and [{Pd(N,C-dmba)(NCO)}(2)(mu-4,4'-bipy)] . CH2Cl2 (5), respectively. The compounds were characterized by elemental analysis, i.r. and n. m. r. spectroscopy and also by t.g.a. The i.r. spectra of (2 - 5) display typical bands of monodentate N-bonded cyanate groups, whereas the n. m. r. data of (4) are consistent with the presence of a bridging 2,2'-bipyridine ligand. Complex (4) decomposes slowly in acetone. One of the products formed, [Pd(H2CCOMe) Cl(2,2'-bipy)] (6), was characterized by X-ray diffraction. As inferred from the t.g.a., the thermal stability decreases in the order: [{Pd(N,C-dmba)(NCO)}(2) (mu-4,4'-bipy)]. CH2Cl2 (5) > [Pd(N,C-dmba)(2,3-lut)( NCO)] (2) = [Pd(N, C-dmba)(3,4-lut)(NCO)] (3) > [{Pd(N,C-dmba)(NCO)}(2)(mu- 2,2'-bipy)] .CH2Cl2 (4). According to thermal analysis and X-ray diffraction patterns compounds (2 - 3) decompose into metallic palladium Pd(0), whereas (4 - 5) decompose with the formation of PdO. The X-ray crystal and molecular structure of [Pd(N, C-dmba)( NCO)(2,3-lut)] (2) was determined. The lutidine unit is perpendicular to the coordination plane.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) and nitrogen heterocyclic polycyclic aromatic compounds (N-PACs) are toxic, highly leachable and often abundant at sites that are also contaminated with PAHs. However, due to lack of regulations and standardized methods for their analysis, they are seldom included in monitoring and risk-assessment programs. This intercomparison study constitutes an important step in the harmonization of the analytical methods currently used, and may also be considered a first step towards the certification of reference materials for these compounds. The results showed that the participants were able to determine oxy-PAHs with accuracy similar to PAHs, with average determined mass fractions agreeing well with the known levels in a spiked soil and acceptable inter- and intra-laboratory precisions for all soils analyzed. For the N-PACs, the results were less satisfactory, and have to be improved by using analytical methods more specifically optimized for these compounds.
Resumo:
Several different mechanisms leading to the formation of (substituted) naphthalene and azanaphthalenes were examined using theoretical quantum chemical calculations. As a result, a series of novel synthetic routes to Polycyclic Aromatic Hydrocarbons (PAHs) and Nitrogen Containing Polycyclic Aromatic Compounds (N-PACs) have been proposed. On Earth, these aromatic compounds originate from incomplete combustion and are released into our environment, where they are known to be major pollutants, often with carcinogenic properties. In the atmosphere of a Saturn's moon Titan, these PAH and N-PACs are believed to play a critical role in organic haze formation, as well as acting as chemical precursors to biologically relevant molecules. The theoretical calculations were performed by employing the ab initio G3(MP2,CC)/B3LYP/6-311G** method to effectively probe the Potential Energy Surfaces (PES) relevant to the PAH and N-PAC formation. Following the construction of the PES, Rice-Ramsperger-Kassel-Markus (RRKM) theory was used to evaluate all unimolecular rate constants as a function of collision energy under single-collision conditions. Branching ratios were then evaluated by solving phenomenological rate expressions for the various product concentrations. The most viable pathways to PAH and N-PAC formation were found to be those where the initial attack by the ethynyl (C2H) or cyano (CN) radical toward a unsaturated hydrocarbon molecule led to the formation of an intermediate which could not effectively lose a hydrogen atom. It is not until ring cyclization has occurred, that hydrogen elimination leads to a closed shell product. By quenching the possibility of the initial hydrogen atom elimination, one of the most competitive processes preventing the PAH or N-PAC formation was avoided, and the PAH or N-PAC formation was allowed to proceed. It is concluded that these considerations should be taken into account when attempting to explore any other potential routes towards aromatic compounds in cold environments, such as on Titan or in the interstellar medium.
Resumo:
Chemical warfare agents continue to pose a global threat despite the efforts of the international community to prohibit their use in warfare. For this reason, improvement in the detection of these compounds remains of forensic interest. Protein adducts formed by the covalent modification of an electrophilic xenobiotic and a nucleophilic amino acid may provide a biomarker of exposure that is stable and specific to compounds of interest (such as chemical warfare agents), and have the capability to extend the window of detection further than the parent compound or circulating metabolites. This research investigated the formation of protein adducts of the nitrogen mustard chemical warfare agents mechlorethamine (HN-2) and tris(2-chloroethyl)amine (HN-3) to lysine and histidine residues found on the blood proteins hemoglobin and human serum albumin. Identified adducts were assessed for reproducibility and stability both in model peptide and whole protein assays. Specificity of these identified adducts was assessed using in vitro assays to metabolize common therapeutic drugs containing nitrogen mustard moieties. Results of the model peptide assays demonstrated that HN-2 and HN-3 were able to form stable adducts with lysine and histidine residues under physiological conditions. Results for whole protein assays identified three histidine adducts on hemoglobin, and three adducts (two lysine residues and one histidine residue) on human serum albumin that were previously unknown. These protein adducts were determined to be reproducible and stable at physiological conditions over a three-week analysis period. Results from the in vitro metabolic assays revealed that adducts formed by HN-2 and HN-3 are specific to these agents, as metabolized therapeutic drugs (chlorambucil, cyclophosphamide, and melphalan) did not form the same adducts on lysine or histidine residues as the previously identified adducts formed by HN-2 and HN-3. Results obtained from the model peptide and full protein work were enhanced by comparing experimental data to theoretical calculations for adduct formation, providing further confirmatory data. This project was successful in identifying and characterizing biomarkers of exposure to HN-2 and HN-3 that are specific and stable and which have the potential to be used for the forensic determination of exposure to these dangerous agents.
Resumo:
The electron field emission (EFE) characteristics from vertically aligned carbon nanotubes (VACNTs) without and with treatment by the nitrogen plasma are investigated. The VACNTs with the plasma treatment showed a significant improvement in the EFE property compared to the untreated VACNTs. The morphological, structural, and compositional properties of the VACNTs are extensively examined by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and energy dispersive X-ray spectroscopy. It is shown that the significant EFE improvement of the VACNTs after the nitrogen plasma treatment is closely related to the variation of the morphological and structural properties of the VACNTs. The high current density (299.6 μA/cm2) achieved at a low applied field (3.50 V/μm) suggests that the VACNTs after nitrogen plasma treatment can serve as effective electron field emission sources for numerous applications.
Resumo:
The possible nonplanar distortions of the amide group in formamide, acetamide, N-methylacetamide, and N-ethylacetamide have been examined using CNDO/2 and INDO methods. The predictions from these methods are compared with the results obtained from X-ray and neutron diffraction studies on crystals of small open peptides, cyclic peptides, and amides. It is shown that the INDO results are in good agreement with observations, and that the dihedral angles N and defining the nonplanarity of the amide unit are correlated approximately by the relation N = -2, while C is small and uncorrelated with . The present study indicates that the nonplanar distortions at the nitrogen atom of the peptide unit may have to be taken into consideration, in addition to the variation in the dihedral angles (,), in working out polypeptide and protein structures.
Resumo:
Fungi have a fundamental role in carbon and nutrient transformations in the acids soils of boreal regions, such as peatlands, where high amounts of carbon (C) and nutrients are stored in peat, the pH is relatively low and the nutrient uptake of trees is highly dependent on mycorrhizae. In this thesis, the aim was to examine nitrogen (N) transformations and the availability of dissolved N compounds in forestry-drained peatlands, to compare the fungal community biomass and structure at various peat N levels, to investigate the growth of ectomycorrhizal fungi with variable P and K availability and to assess how the ectomycorrhizal fungi (ECM) affect N transformations. Both field and laboratory experiments were carried out. The peat N concentration did not affect the soil fungal community structure within a site. Phosphorus (P) and potassium (K) deficiency of the trees as well as the degree of decomposition and dissolved organic nitrogen (DON) concentration of the peat were shown to affect the fungal community structure and biomass of ECMs, highlighting the complexity of the below ground system on drained peatlands. The biomass of extrametrical mycorrhizal mycelia (EMM) was enhanced by P and/or K deficiency of the trees, and ECM biomass in the roots was increased by P deficiency. Thus, PK deficiency in drained peatlands may increase the allocation of C by the tree to ECMs. It was also observed that fungi can alter N mineralization processes in the rhizosphere but variously depending on fungal species and fertility level of peat. Gross N mineralization did not vary but the net N mineralization rate significantly increased along the N gradient in both field and laboratory experiments. Gross N immobilization also significantly increased when the peat N concentration increased. Nitrification was hardly detectable in either field or laboratory experiments. During the growing season, dissolved inorganic N (DIN) fluctuated much more than the relatively stable DON. Special methodological challenges associated with sampling and analysis in microbial studies on peatlands are discussed.
Resumo:
The effect of different donor nitrogen atoms on the strength and nature of intramolecular Se center dot center dot center dot N interactions is evaluated for organoselenium compounds having N,N-dimethylaminomethyl (dime), oxazoline (oxa) and pyridyl (py) substituents. Quantum chemical calculations on three series of compounds [2-(dime)C6H4SeX (1a-g), 2-(oxa)C6H4SeX (2a-g), 2- (py)C6H4SeX (3-ag); X=Cl, Br, OH, CN, SPh, SePh, CH3] at the B3LYP/6-31G(d) level show that the stability of different conformers depends on the strength of intramolecular nonbonded Se center dot center dot center dot N interactions. Natural bond orbital (NBO), NBO deletion and atoms in molecules (AIM) analyses suggest that the nature of the Se center dot center dot center dot N interaction is predominantly covalent and involves nN ->sigma*(Se-X) orbital interaction. In the three series of compounds, the strength of the Se center dot center dot center dot N interaction decreases in the order 3>2>1 for a particular X, and it decreases in the order Cl > Br > OH>SPh approximate to CN approximate to SePh>CH3 for all the three series 1-3. However, further analyses suggest that the differences in strength of Se center dot center dot center dot N interaction in 1-3 is predominantly determined by the distance between the Se and N atoms, which in turn is an outcome of specific structures of 1, 2 and 3, and the nature of the donor nitrogen atoms involved has very little effect on the strength of Se center dot center dot center dot N interaction. It is also observed that Se center dot center dot center dot N interaction becomes stronger in polar solvents such as CHCl3, as indicated by the shorter r(Se center dot center dot center dot N) and higher E-Se center dot center dot center dot N values in CHCl3 compared to those observed in the gas phase.
Resumo:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration, the diffusion coefficient, the dipole orientation, and the density distribution, and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore, this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.
Resumo:
Density functional theory/molecular dynamics simulations were employed to give insights into the mechanism of voltage generation based on a water-filled single-walled boron-nitrogen nanotube (SWBNNT). Our calculations showed that (1) the transport properties of confined water in a SWBNNT are different from those of bulk water in view of configuration the diffusion coefficient the dipole orientation and the density distribution and (2) a voltage difference of several millivolts would generate between the two ends of a SWBNNT due to interactions between the water dipole chains and charge carriers in the tube. Therefore this structure of a water-filled SWBNNT can be a promising candidate for a synthetic nanoscale power cell as well as a practical nanopower harvesting device.
Resumo:
The reactivity of permethylzirconocene and permethylhafnocene complexes with various nucleophiles has been investigated. Permethylzirconocene reacts with sterically hindered ketenes and allenes to afford metallacycle products. Reaction of these cummulenes with permethylzirconocene hydride complexes affords enolate and σ-allyl species, respectively. Reactions which afford enolate products are nonstereospecific, whereas reactions which afford allyl products initially give a cis-σ-allyl complex which rearranges to its trans isomer. The mechanism of these reactions is proposed to occur either by a Lewis Acid-Lewis Base interaction (ketenes) or by formation of a π-olefin intermediate (allenes).
Permethylzirconocene haloacyl complexes react with strong bases such as lithium diisopropylamide or methylene trimethylphosphorane to afford ketene compounds. Depending on the size of the alkyl ketene substituent, the hydrogenation of these compounds affords enolate-hydride products with varying degrees of stereoselectivity. The larger the substituent, the greater is the selectivity for cis hydrogenation products.
The reaction of permethylzirconocene dihydride and permethylhafnocene dihydride with methylene trimethylphosphorane affords methyl-hydride and dimethyl derivatives. Under appropriate conditions, the metallated-ylide complex 1, (η^5-C_5(CH_3)_5)_2 Zr(H)CH_2PMe_2CH_2, is also obtained and has been structurally characterized by X-ray diffraction techniques. Reaction of 1 with CO affords (η^5-C_5(CH_3)_5)_2 Zr(C,O-η^2 -(PMe_3)HC=CO)H which exists in solution as an equilibrium mixture of isomers. In one isomer (2), the η^2-acyl oxygen atom occupies a lateral equatorial coordination position about zirconium, whereas in the other isomer (3), the η-acyl oxygen atom occupies the central equatorial position. The equilibrium kinetics of the 2→3 isomerization have been studied and the structures of both complexes confirmed by X-ray diffraction methods. These studies suggest a mechanism for CO insertion into metal-carbon bonds of the early transition metals.
Permethylhafnocene dihydride and permethylzirconocene hydride complexes react with diazoalkanes to afford η^2-N, N' -hydrazonido species in which the terminal nitrogen atom of the diazoalkane molecule has inserted into a metal-hydride or metal-carbon bond. The structure of one of these compounds, Cp*_2Zr(NMeNCTol_2)OH, has been determined by X-ray diffraction techniques. Under appropriate conditions, the hydrazonido-hydride complexes react with a second equivalent of diazoalkene to afford η' -N-hydrazonido-η^2-N, N' -hydrazonido species.
Resumo:
When dissolved in water, compounds of nitrogen and phosphorus ought to contain the basic assimilated food requirements for autotrophic plants and therefore autotrophic algae. This article summarises the occurrence of nitrogen in water, how species of algae utilize nitrogen and phosphorus forms for growth and the capacities of algae to adapt to environments of different nutrient wealth. This topic has unquestionable importance not only for the purpose of survival of a species but also in deciding indirectly about the stability of ecosystems.