999 resultados para Newton-Raphson method
Resumo:
The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi-phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which does not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show the modal transformation matrix of a hypothetical two-phase obtained with numerical and analytical procedures. It will be shown currents and voltage s at terminals of the line taking into account the use of modal transformation matrices obtained by using numerical and analytical procedures. © 2011 IEEE.
Resumo:
The phases of a transmission line are tightly coupled due to mutual impedances and admittances of the line. One way to accomplish the calculations of currents and voltages in multi-phase lines consists in representing them in modal domain, where its n coupled phases are represented by their n propagation modes. The separation line in their modes of propagation is through the use of a modal transformation matrix whose columns are eigenvectors associated with the parameters of the line. Usually, this matrix is achieved through numerical methods which do not allow the achievement of an analytical model for line developed directly in the phases domain. This work will show an analytical model for phase currents and voltages of the line and results it will be applied to a hypothetical two-phase. It will be shown results obtained with that will be compared to results obtained using a classical model. © 2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Matemática em Rede Nacional - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The present work develops a model to simulate the dynamics of a quadcopter being controlled by a PD fuzzy controller. Initially is presented a brief history of quadcopters an introduction to fuzzy logic and fuzzy control systems. Afterwards is presented an overview of the quadcopter dynamics and the mathematical modelling development applying Newton-Euler method. Then the modelling are implemented in a Simulink model in addition to a PD fuzzy controller. A prototype proposition is made, by describing each necessary component to build up a quadcopter. In the end the results from the simulators are discussed and compared due to the discrepancy between the model using ideal sensor and the model using non-ideal sensors
Resumo:
This Ph.D thesis focuses on iterative regularization methods for regularizing linear and nonlinear ill-posed problems. Regarding linear problems, three new stopping rules for the Conjugate Gradient method applied to the normal equations are proposed and tested in many numerical simulations, including some tomographic images reconstruction problems. Regarding nonlinear problems, convergence and convergence rate results are provided for a Newton-type method with a modified version of Landweber iteration as an inner iteration in a Banach space setting.
Resumo:
Die vorliegende Arbeit behandelt die Entwicklung und Verbesserung von linear skalierenden Algorithmen für Elektronenstruktur basierte Molekulardynamik. Molekulardynamik ist eine Methode zur Computersimulation des komplexen Zusammenspiels zwischen Atomen und Molekülen bei endlicher Temperatur. Ein entscheidender Vorteil dieser Methode ist ihre hohe Genauigkeit und Vorhersagekraft. Allerdings verhindert der Rechenaufwand, welcher grundsätzlich kubisch mit der Anzahl der Atome skaliert, die Anwendung auf große Systeme und lange Zeitskalen. Ausgehend von einem neuen Formalismus, basierend auf dem großkanonischen Potential und einer Faktorisierung der Dichtematrix, wird die Diagonalisierung der entsprechenden Hamiltonmatrix vermieden. Dieser nutzt aus, dass die Hamilton- und die Dichtematrix aufgrund von Lokalisierung dünn besetzt sind. Das reduziert den Rechenaufwand so, dass er linear mit der Systemgröße skaliert. Um seine Effizienz zu demonstrieren, wird der daraus entstehende Algorithmus auf ein System mit flüssigem Methan angewandt, das extremem Druck (etwa 100 GPa) und extremer Temperatur (2000 - 8000 K) ausgesetzt ist. In der Simulation dissoziiert Methan bei Temperaturen oberhalb von 4000 K. Die Bildung von sp²-gebundenem polymerischen Kohlenstoff wird beobachtet. Die Simulationen liefern keinen Hinweis auf die Entstehung von Diamant und wirken sich daher auf die bisherigen Planetenmodelle von Neptun und Uranus aus. Da das Umgehen der Diagonalisierung der Hamiltonmatrix die Inversion von Matrizen mit sich bringt, wird zusätzlich das Problem behandelt, eine (inverse) p-te Wurzel einer gegebenen Matrix zu berechnen. Dies resultiert in einer neuen Formel für symmetrisch positiv definite Matrizen. Sie verallgemeinert die Newton-Schulz Iteration, Altmans Formel für beschränkte und nicht singuläre Operatoren und Newtons Methode zur Berechnung von Nullstellen von Funktionen. Der Nachweis wird erbracht, dass die Konvergenzordnung immer mindestens quadratisch ist und adaptives Anpassen eines Parameters q in allen Fällen zu besseren Ergebnissen führt.
Resumo:
This dissertation concerns convergence analysis for nonparametric problems in the calculus of variations and sufficient conditions for weak local minimizer of a functional for both nonparametric and parametric problems. Newton's method in infinite-dimensional space is proved to be well-defined and converges quadratically to a weak local minimizer of a functional subject to certain boundary conditions. Sufficient conditions for global converges are proposed and a well-defined algorithm based on those conditions is presented and proved to converge. Finite element discretization is employed to achieve an implementable line-search-based quasi-Newton algorithm and a proof of convergence of the discretization of the algorithm is included. This work also proposes sufficient conditions for weak local minimizer without using the language of conjugate points. The form of new conditions is consistent with the ones in finite-dimensional case. It is believed that the new form of sufficient conditions will lead to simpler approaches to verify an extremal as local minimizer for well-known problems in calculus of variations.
Resumo:
We present new algorithms for M-estimators of multivariate scatter and location and for symmetrized M-estimators of multivariate scatter. The new algorithms are considerably faster than currently used fixed-point and related algorithms. The main idea is to utilize a second order Taylor expansion of the target functional and to devise a partial Newton-Raphson procedure. In connection with symmetrized M-estimators we work with incomplete U-statistics to accelerate our procedures initially.
Resumo:
The history of the logistic function since its introduction in 1838 is reviewed, and the logistic model for a polychotomous response variable is presented with a discussion of the assumptions involved in its derivation and use. Following this, the maximum likelihood estimators for the model parameters are derived along with a Newton-Raphson iterative procedure for evaluation. A rigorous mathematical derivation of the limiting distribution of the maximum likelihood estimators is then presented using a characteristic function approach. An appendix with theorems on the asymptotic normality of sample sums when the observations are not identically distributed, with proofs, supports the presentation on asymptotic properties of the maximum likelihood estimators. Finally, two applications of the model are presented using data from the Hypertension Detection and Follow-up Program, a prospective, population-based, randomized trial of treatment for hypertension. The first application compares the risk of five-year mortality from cardiovascular causes with that from noncardiovascular causes; the second application compares risk factors for fatal or nonfatal coronary heart disease with those for fatal or nonfatal stroke. ^
Resumo:
Global linear instability theory is concerned with the temporal or spatial development of small-amplitude perturbations superposed upon laminar steady or time-periodic threedimensional flows, which are inhomogeneous in two (and periodic in one) or all three spatial directions.1 The theory addresses flows developing in complex geometries, in which the parallel or weakly nonparallel basic flow approximation invoked by classic linear stability theory does not hold. As such, global linear theory is called to fill the gap in research into stability and transition in flows over or through complex geometries. Historically, global linear instability has been (and still is) concerned with solution of multi-dimensional eigenvalue problems; the maturing of non-modal linear instability ideas in simple parallel flows during the last decade of last century2–4 has given rise to investigation of transient growth scenarios in an ever increasing variety of complex flows. After a brief exposition of the theory, connections are sought with established approaches for structure identification in flows, such as the proper orthogonal decomposition and topology theory in the laminar regime and the open areas for future research, mainly concerning turbulent and three-dimensional flows, are highlighted. Recent results obtained in our group are reported in both the time-stepping and the matrix-forming approaches to global linear theory. In the first context, progress has been made in implementing a Jacobian-Free Newton Krylov method into a standard finite-volume aerodynamic code, such that global linear instability results may now be obtained in compressible flows of aeronautical interest. In the second context a new stable very high-order finite difference method is implemented for the spatial discretization of the operators describing the spatial BiGlobal EVP, PSE-3D and the TriGlobal EVP; combined with sparse matrix treatment, all these problems may now be solved on standard desktop computers.
Resumo:
El presente Trabajo fin Fin de Máster, versa sobre una caracterización preliminar del comportamiento de un robot de tipo industrial, configurado por 4 eslabones y 4 grados de libertad, y sometido a fuerzas de mecanizado en su extremo. El entorno de trabajo planteado es el de plantas de fabricación de piezas de aleaciones de aluminio para automoción. Este tipo de componentes parte de un primer proceso de fundición que saca la pieza en bruto. Para series medias y altas, en función de las propiedades mecánicas y plásticas requeridas y los costes de producción, la inyección a alta presión (HPDC) y la fundición a baja presión (LPC) son las dos tecnologías más usadas en esta primera fase. Para inyección a alta presión, las aleaciones de aluminio más empleadas son, en designación simbólica según norma EN 1706 (entre paréntesis su designación numérica); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). Para baja presión, EN AC AlSi7Mg0,3 (EN AC 42100). En los 3 primeros casos, los límites de Silicio permitidos pueden superan el 10%. En el cuarto caso, es inferior al 10% por lo que, a los efectos de ser sometidas a mecanizados, las piezas fabricadas en aleaciones con Si superior al 10%, se puede considerar que son equivalentes, diferenciándolas de la cuarta. Las tolerancias geométricas y dimensionales conseguibles directamente de fundición, recogidas en normas como ISO 8062 o DIN 1688-1, establecen límites para este proceso. Fuera de esos límites, las garantías en conseguir producciones con los objetivos de ppms aceptados en la actualidad por el mercado, obligan a ir a fases posteriores de mecanizado. Aquellas geometrías que, funcionalmente, necesitan disponer de unas tolerancias geométricas y/o dimensionales definidas acorde a ISO 1101, y no capaces por este proceso inicial de moldeado a presión, deben ser procesadas en una fase posterior en células de mecanizado. En este caso, las tolerancias alcanzables para procesos de arranque de viruta se recogen en normas como ISO 2768. Las células de mecanizado se componen, por lo general, de varios centros de control numérico interrelacionados y comunicados entre sí por robots que manipulan las piezas en proceso de uno a otro. Dichos robots, disponen en su extremo de una pinza utillada para poder coger y soltar las piezas en los útiles de mecanizado, las mesas de intercambio para cambiar la pieza de posición o en utillajes de equipos de medición y prueba, o en cintas de entrada o salida. La repetibilidad es alta, de centésimas incluso, definida según norma ISO 9283. El problema es que, estos rangos de repetibilidad sólo se garantizan si no se hacen esfuerzos o éstos son despreciables (caso de mover piezas). Aunque las inercias de mover piezas a altas velocidades hacen que la trayectoria intermedia tenga poca precisión, al inicio y al final (al coger y dejar pieza, p.e.) se hacen a velocidades relativamente bajas que hacen que el efecto de las fuerzas de inercia sean menores y que permiten garantizar la repetibilidad anteriormente indicada. No ocurre así si se quitara la garra y se intercambia con un cabezal motorizado con una herramienta como broca, mandrino, plato de cuchillas, fresas frontales o tangenciales… Las fuerzas ejercidas de mecanizado generarían unos pares en las uniones tan grandes y tan variables que el control del robot no sería capaz de responder (o no está preparado, en un principio) y generaría una desviación en la trayectoria, realizada a baja velocidad, que desencadenaría en un error de posición (ver norma ISO 5458) no asumible para la funcionalidad deseada. Se podría llegar al caso de que la tolerancia alcanzada por un pretendido proceso más exacto diera una dimensión peor que la que daría el proceso de fundición, en principio con mayor variabilidad dimensional en proceso (y por ende con mayor intervalo de tolerancia garantizable). De hecho, en los CNCs, la precisión es muy elevada, (pudiéndose despreciar en la mayoría de los casos) y no es la responsable de, por ejemplo la tolerancia de posición al taladrar un agujero. Factores como, temperatura de la sala y de la pieza, calidad constructiva de los utillajes y rigidez en el amarre, error en el giro de mesas y de colocación de pieza, si lleva agujeros previos o no, si la herramienta está bien equilibrada y el cono es el adecuado para el tipo de mecanizado… influyen más. Es interesante que, un elemento no específico tan común en una planta industrial, en el entorno anteriormente descrito, como es un robot, el cual no sería necesario añadir por disponer de él ya (y por lo tanto la inversión sería muy pequeña), puede mejorar la cadena de valor disminuyendo el costo de fabricación. Y si se pudiera conjugar que ese robot destinado a tareas de manipulación, en los muchos tiempos de espera que va a disfrutar mientras el CNC arranca viruta, pudiese coger un cabezal y apoyar ese mecanizado; sería doblemente interesante. Por lo tanto, se antoja sugestivo poder conocer su comportamiento e intentar explicar qué sería necesario para llevar esto a cabo, motivo de este trabajo. La arquitectura de robot seleccionada es de tipo SCARA. La búsqueda de un robot cómodo de modelar y de analizar cinemática y dinámicamente, sin limitaciones relevantes en la multifuncionalidad de trabajos solicitados, ha llevado a esta elección, frente a otras arquitecturas como por ejemplo los robots antropomórficos de 6 grados de libertad, muy populares a nivel industrial. Este robot dispone de 3 uniones, de las cuales 2 son de tipo par de revolución (1 grado de libertad cada una) y la tercera es de tipo corredera o par cilíndrico (2 grados de libertad). La primera unión, de tipo par de revolución, sirve para unir el suelo (considerado como eslabón número 1) con el eslabón número 2. La segunda unión, también de ese tipo, une el eslabón número 2 con el eslabón número 3. Estos 2 brazos, pueden describir un movimiento horizontal, en el plano X-Y. El tercer eslabón, está unido al eslabón número 4 por la unión de tipo corredera. El movimiento que puede describir es paralelo al eje Z. El robot es de 4 grados de libertad (4 motores). En relación a los posibles trabajos que puede realizar este tipo de robot, su versatilidad abarca tanto operaciones típicas de manipulación como operaciones de arranque de viruta. Uno de los mecanizados más usuales es el taladrado, por lo cual se elige éste para su modelización y análisis. Dentro del taladrado se elegirá para acotar las fuerzas, taladrado en macizo con broca de diámetro 9 mm. El robot se ha considerado por el momento que tenga comportamiento de sólido rígido, por ser el mayor efecto esperado el de los pares en las uniones. Para modelar el robot se utiliza el método de los sistemas multicuerpos. Dentro de este método existen diversos tipos de formulaciones (p.e. Denavit-Hartenberg). D-H genera una cantidad muy grande de ecuaciones e incógnitas. Esas incógnitas son de difícil comprensión y, para cada posición, hay que detenerse a pensar qué significado tienen. Se ha optado por la formulación de coordenadas naturales. Este sistema utiliza puntos y vectores unitarios para definir la posición de los distintos cuerpos, y permite compartir, cuando es posible y se quiere, para definir los pares cinemáticos y reducir al mismo tiempo el número de variables. Las incógnitas son intuitivas, las ecuaciones de restricción muy sencillas y se reduce considerablemente el número de ecuaciones e incógnitas. Sin embargo, las coordenadas naturales “puras” tienen 2 problemas. El primero, que 2 elementos con un ángulo de 0 o 180 grados, dan lugar a puntos singulares que pueden crear problemas en las ecuaciones de restricción y por lo tanto han de evitarse. El segundo, que tampoco inciden directamente sobre la definición o el origen de los movimientos. Por lo tanto, es muy conveniente complementar esta formulación con ángulos y distancias (coordenadas relativas). Esto da lugar a las coordenadas naturales mixtas, que es la formulación final elegida para este TFM. Las coordenadas naturales mixtas no tienen el problema de los puntos singulares. Y la ventaja más importante reside en su utilidad a la hora de aplicar fuerzas motrices, momentos o evaluar errores. Al incidir sobre la incógnita origen (ángulos o distancias) controla los motores de manera directa. El algoritmo, la simulación y la obtención de resultados se ha programado mediante Matlab. Para realizar el modelo en coordenadas naturales mixtas, es preciso modelar en 2 pasos el robot a estudio. El primer modelo se basa en coordenadas naturales. Para su validación, se plantea una trayectoria definida y se analiza cinemáticamente si el robot satisface el movimiento solicitado, manteniendo su integridad como sistema multicuerpo. Se cuantifican los puntos (en este caso inicial y final) que configuran el robot. Al tratarse de sólidos rígidos, cada eslabón queda definido por sus respectivos puntos inicial y final (que son los más interesantes para la cinemática y la dinámica) y por un vector unitario no colineal a esos 2 puntos. Los vectores unitarios se colocan en los lugares en los que se tenga un eje de rotación o cuando se desee obtener información de un ángulo. No son necesarios vectores unitarios para medir distancias. Tampoco tienen por qué coincidir los grados de libertad con el número de vectores unitarios. Las longitudes de cada eslabón quedan definidas como constantes geométricas. Se establecen las restricciones que definen la naturaleza del robot y las relaciones entre los diferentes elementos y su entorno. La trayectoria se genera por una nube de puntos continua, definidos en coordenadas independientes. Cada conjunto de coordenadas independientes define, en un instante concreto, una posición y postura de robot determinada. Para conocerla, es necesario saber qué coordenadas dependientes hay en ese instante, y se obtienen resolviendo por el método de Newton-Rhapson las ecuaciones de restricción en función de las coordenadas independientes. El motivo de hacerlo así es porque las coordenadas dependientes deben satisfacer las restricciones, cosa que no ocurre con las coordenadas independientes. Cuando la validez del modelo se ha probado (primera validación), se pasa al modelo 2. El modelo número 2, incorpora a las coordenadas naturales del modelo número 1, las coordenadas relativas en forma de ángulos en los pares de revolución (3 ángulos; ϕ1, ϕ 2 y ϕ3) y distancias en los pares prismáticos (1 distancia; s). Estas coordenadas relativas pasan a ser las nuevas coordenadas independientes (sustituyendo a las coordenadas independientes cartesianas del modelo primero, que eran coordenadas naturales). Es necesario revisar si el sistema de vectores unitarios del modelo 1 es suficiente o no. Para este caso concreto, se han necesitado añadir 1 vector unitario adicional con objeto de que los ángulos queden perfectamente determinados con las correspondientes ecuaciones de producto escalar y/o vectorial. Las restricciones habrán de ser incrementadas en, al menos, 4 ecuaciones; una por cada nueva incógnita. La validación del modelo número 2, tiene 2 fases. La primera, al igual que se hizo en el modelo número 1, a través del análisis cinemático del comportamiento con una trayectoria definida. Podrían obtenerse del modelo 2 en este análisis, velocidades y aceleraciones, pero no son necesarios. Tan sólo interesan los movimientos o desplazamientos finitos. Comprobada la coherencia de movimientos (segunda validación), se pasa a analizar cinemáticamente el comportamiento con trayectorias interpoladas. El análisis cinemático con trayectorias interpoladas, trabaja con un número mínimo de 3 puntos máster. En este caso se han elegido 3; punto inicial, punto intermedio y punto final. El número de interpolaciones con el que se actúa es de 50 interpolaciones en cada tramo (cada 2 puntos máster hay un tramo), resultando un total de 100 interpolaciones. El método de interpolación utilizado es el de splines cúbicas con condición de aceleración inicial y final constantes, que genera las coordenadas independientes de los puntos interpolados de cada tramo. Las coordenadas dependientes se obtienen resolviendo las ecuaciones de restricción no lineales con el método de Newton-Rhapson. El método de las splines cúbicas es muy continuo, por lo que si se desea modelar una trayectoria en el que haya al menos 2 movimientos claramente diferenciados, es preciso hacerlo en 2 tramos y unirlos posteriormente. Sería el caso en el que alguno de los motores se desee expresamente que esté parado durante el primer movimiento y otro distinto lo esté durante el segundo movimiento (y así sucesivamente). Obtenido el movimiento, se calculan, también mediante fórmulas de diferenciación numérica, las velocidades y aceleraciones independientes. El proceso es análogo al anteriormente explicado, recordando la condición impuesta de que la aceleración en el instante t= 0 y en instante t= final, se ha tomado como 0. Las velocidades y aceleraciones dependientes se calculan resolviendo las correspondientes derivadas de las ecuaciones de restricción. Se comprueba, de nuevo, en una tercera validación del modelo, la coherencia del movimiento interpolado. La dinámica inversa calcula, para un movimiento definido -conocidas la posición, velocidad y la aceleración en cada instante de tiempo-, y conocidas las fuerzas externas que actúan (por ejemplo el peso); qué fuerzas hay que aplicar en los motores (donde hay control) para que se obtenga el citado movimiento. En la dinámica inversa, cada instante del tiempo es independiente de los demás y tiene una posición, una velocidad y una aceleración y unas fuerzas conocidas. En este caso concreto, se desean aplicar, de momento, sólo las fuerzas debidas al peso, aunque se podrían haber incorporado fuerzas de otra naturaleza si se hubiese deseado. Las posiciones, velocidades y aceleraciones, proceden del cálculo cinemático. El efecto inercial de las fuerzas tenidas en cuenta (el peso) es calculado. Como resultado final del análisis dinámico inverso, se obtienen los pares que han de ejercer los cuatro motores para replicar el movimiento prescrito con las fuerzas que estaban actuando. La cuarta validación del modelo consiste en confirmar que el movimiento obtenido por aplicar los pares obtenidos en la dinámica inversa, coinciden con el obtenido en el análisis cinemático (movimiento teórico). Para ello, es necesario acudir a la dinámica directa. La dinámica directa se encarga de calcular el movimiento del robot, resultante de aplicar unos pares en motores y unas fuerzas en el robot. Por lo tanto, el movimiento real resultante, al no haber cambiado ninguna condición de las obtenidas en la dinámica inversa (pares de motor y fuerzas inerciales debidas al peso de los eslabones) ha de ser el mismo al movimiento teórico. Siendo así, se considera que el robot está listo para trabajar. Si se introduce una fuerza exterior de mecanizado no contemplada en la dinámica inversa y se asigna en los motores los mismos pares resultantes de la resolución del problema dinámico inverso, el movimiento real obtenido no es igual al movimiento teórico. El control de lazo cerrado se basa en ir comparando el movimiento real con el deseado e introducir las correcciones necesarias para minimizar o anular las diferencias. Se aplican ganancias en forma de correcciones en posición y/o velocidad para eliminar esas diferencias. Se evalúa el error de posición como la diferencia, en cada punto, entre el movimiento teórico deseado en el análisis cinemático y el movimiento real obtenido para cada fuerza de mecanizado y una ganancia concreta. Finalmente, se mapea el error de posición obtenido para cada fuerza de mecanizado y las diferentes ganancias previstas, graficando la mejor precisión que puede dar el robot para cada operación que se le requiere, y en qué condiciones. -------------- This Master´s Thesis deals with a preliminary characterization of the behaviour for an industrial robot, configured with 4 elements and 4 degrees of freedoms, and subjected to machining forces at its end. Proposed working conditions are those typical from manufacturing plants with aluminium alloys for automotive industry. This type of components comes from a first casting process that produces rough parts. For medium and high volumes, high pressure die casting (HPDC) and low pressure die casting (LPC) are the most used technologies in this first phase. For high pressure die casting processes, most used aluminium alloys are, in simbolic designation according EN 1706 standard (between brackets, its numerical designation); EN AC AlSi9Cu3(Fe) (EN AC 46000) , EN AC AlSi9Cu3(Fe)(Zn) (EN AC 46500), y EN AC AlSi12Cu1(Fe) (EN AC 47100). For low pressure, EN AC AlSi7Mg0,3 (EN AC 42100). For the 3 first alloys, Si allowed limits can exceed 10% content. Fourth alloy has admisible limits under 10% Si. That means, from the point of view of machining, that components made of alloys with Si content above 10% can be considered as equivalent, and the fourth one must be studied separately. Geometrical and dimensional tolerances directly achievables from casting, gathered in standards such as ISO 8062 or DIN 1688-1, establish a limit for this process. Out from those limits, guarantees to achieve batches with objetive ppms currently accepted by market, force to go to subsequent machining process. Those geometries that functionally require a geometrical and/or dimensional tolerance defined according ISO 1101, not capable with initial moulding process, must be obtained afterwards in a machining phase with machining cells. In this case, tolerances achievables with cutting processes are gathered in standards such as ISO 2768. In general terms, machining cells contain several CNCs that they are interrelated and connected by robots that handle parts in process among them. Those robots have at their end a gripper in order to take/remove parts in machining fixtures, in interchange tables to modify position of part, in measurement and control tooling devices, or in entrance/exit conveyors. Repeatibility for robot is tight, even few hundredths of mm, defined according ISO 9283. Problem is like this; those repeatibilty ranks are only guaranteed when there are no stresses or they are not significant (f.e. due to only movement of parts). Although inertias due to moving parts at a high speed make that intermediate paths have little accuracy, at the beginning and at the end of trajectories (f.e, when picking part or leaving it) movement is made with very slow speeds that make lower the effect of inertias forces and allow to achieve repeatibility before mentioned. It does not happens the same if gripper is removed and it is exchanged by an spindle with a machining tool such as a drilling tool, a pcd boring tool, a face or a tangential milling cutter… Forces due to machining would create such big and variable torques in joints that control from the robot would not be able to react (or it is not prepared in principle) and would produce a deviation in working trajectory, made at a low speed, that would trigger a position error (see ISO 5458 standard) not assumable for requested function. Then it could be possible that tolerance achieved by a more exact expected process would turn out into a worst dimension than the one that could be achieved with casting process, in principle with a larger dimensional variability in process (and hence with a larger tolerance range reachable). As a matter of fact, accuracy is very tight in CNC, (its influence can be ignored in most cases) and it is not the responsible of, for example position tolerance when drilling a hole. Factors as, room and part temperature, manufacturing quality of machining fixtures, stiffness at clamping system, rotating error in 4th axis and part positioning error, if there are previous holes, if machining tool is properly balanced, if shank is suitable for that machining type… have more influence. It is interesting to know that, a non specific element as common, at a manufacturing plant in the enviroment above described, as a robot (not needed to be added, therefore with an additional minimum investment), can improve value chain decreasing manufacturing costs. And when it would be possible to combine that the robot dedicated to handling works could support CNCs´ works in its many waiting time while CNCs cut, and could take an spindle and help to cut; it would be double interesting. So according to all this, it would be interesting to be able to know its behaviour and try to explain what would be necessary to make this possible, reason of this work. Selected robot architecture is SCARA type. The search for a robot easy to be modeled and kinematically and dinamically analyzed, without significant limits in the multifunctionality of requested operations, has lead to this choice. Due to that, other very popular architectures in the industry, f.e. 6 DOFs anthropomorphic robots, have been discarded. This robot has 3 joints, 2 of them are revolute joints (1 DOF each one) and the third one is a cylindrical joint (2 DOFs). The first joint, a revolute one, is used to join floor (body 1) with body 2. The second one, a revolute joint too, joins body 2 with body 3. These 2 bodies can move horizontally in X-Y plane. Body 3 is linked to body 4 with a cylindrical joint. Movement that can be made is paralell to Z axis. The robt has 4 degrees of freedom (4 motors). Regarding potential works that this type of robot can make, its versatility covers either typical handling operations or cutting operations. One of the most common machinings is to drill. That is the reason why it has been chosen for the model and analysis. Within drilling, in order to enclose spectrum force, a typical solid drilling with 9 mm diameter. The robot is considered, at the moment, to have a behaviour as rigid body, as biggest expected influence is the one due to torques at joints. In order to modelize robot, it is used multibodies system method. There are under this heading different sorts of formulations (f.e. Denavit-Hartenberg). D-H creates a great amount of equations and unknown quantities. Those unknown quatities are of a difficult understanding and, for each position, one must stop to think about which meaning they have. The choice made is therefore one of formulation in natural coordinates. This system uses points and unit vectors to define position of each different elements, and allow to share, when it is possible and wished, to define kinematic torques and reduce number of variables at the same time. Unknown quantities are intuitive, constrain equations are easy and number of equations and variables are strongly reduced. However, “pure” natural coordinates suffer 2 problems. The first one is that 2 elements with an angle of 0° or 180°, give rise to singular positions that can create problems in constrain equations and therefore they must be avoided. The second problem is that they do not work directly over the definition or the origin of movements. Given that, it is highly recommended to complement this formulation with angles and distances (relative coordinates). This leads to mixed natural coordinates, and they are the final formulation chosen for this MTh. Mixed natural coordinates have not the problem of singular positions. And the most important advantage lies in their usefulness when applying driving forces, torques or evaluating errors. As they influence directly over origin variable (angles or distances), they control motors directly. The algorithm, simulation and obtaining of results has been programmed with Matlab. To design the model in mixed natural coordinates, it is necessary to model the robot to be studied in 2 steps. The first model is based in natural coordinates. To validate it, it is raised a defined trajectory and it is kinematically analyzed if robot fulfils requested movement, keeping its integrity as multibody system. The points (in this case starting and ending points) that configure the robot are quantified. As the elements are considered as rigid bodies, each of them is defined by its respectively starting and ending point (those points are the most interesting ones from the point of view of kinematics and dynamics) and by a non-colinear unit vector to those points. Unit vectors are placed where there is a rotating axis or when it is needed information of an angle. Unit vectors are not needed to measure distances. Neither DOFs must coincide with the number of unit vectors. Lengths of each arm are defined as geometrical constants. The constrains that define the nature of the robot and relationships among different elements and its enviroment are set. Path is generated by a cloud of continuous points, defined in independent coordinates. Each group of independent coordinates define, in an specific instant, a defined position and posture for the robot. In order to know it, it is needed to know which dependent coordinates there are in that instant, and they are obtained solving the constraint equations with Newton-Rhapson method according to independent coordinates. The reason to make it like this is because dependent coordinates must meet constraints, and this is not the case with independent coordinates. When suitability of model is checked (first approval), it is given next step to model 2. Model 2 adds to natural coordinates from model 1, the relative coordinates in the shape of angles in revoluting torques (3 angles; ϕ1, ϕ 2 and ϕ3) and distances in prismatic torques (1 distance; s). These relative coordinates become the new independent coordinates (replacing to cartesian independent coordinates from model 1, that they were natural coordinates). It is needed to review if unit vector system from model 1 is enough or not . For this specific case, it was necessary to add 1 additional unit vector to define perfectly angles with their related equations of dot and/or cross product. Constrains must be increased in, at least, 4 equations; one per each new variable. The approval of model 2 has two phases. The first one, same as made with model 1, through kinematic analysis of behaviour with a defined path. During this analysis, it could be obtained from model 2, velocities and accelerations, but they are not needed. They are only interesting movements and finite displacements. Once that the consistence of movements has been checked (second approval), it comes when the behaviour with interpolated trajectories must be kinematically analyzed. Kinematic analysis with interpolated trajectories work with a minimum number of 3 master points. In this case, 3 points have been chosen; starting point, middle point and ending point. The number of interpolations has been of 50 ones in each strecht (each 2 master points there is an strecht), turning into a total of 100 interpolations. The interpolation method used is the cubic splines one with condition of constant acceleration both at the starting and at the ending point. This method creates the independent coordinates of interpolated points of each strecht. The dependent coordinates are achieved solving the non-linear constrain equations with Newton-Rhapson method. The method of cubic splines is very continuous, therefore when it is needed to design a trajectory in which there are at least 2 movements clearly differents, it is required to make it in 2 steps and join them later. That would be the case when any of the motors would keep stopped during the first movement, and another different motor would remain stopped during the second movement (and so on). Once that movement is obtained, they are calculated, also with numerical differenciation formulas, the independent velocities and accelerations. This process is analogous to the one before explained, reminding condition that acceleration when t=0 and t=end are 0. Dependent velocities and accelerations are calculated solving related derivatives of constrain equations. In a third approval of the model it is checked, again, consistence of interpolated movement. Inverse dynamics calculates, for a defined movement –knowing position, velocity and acceleration in each instant of time-, and knowing external forces that act (f.e. weights); which forces must be applied in motors (where there is control) in order to obtain requested movement. In inverse dynamics, each instant of time is independent of the others and it has a position, a velocity, an acceleration and known forces. In this specific case, it is intended to apply, at the moment, only forces due to the weight, though forces of another nature could have been added if it would have been preferred. The positions, velocities and accelerations, come from kinematic calculation. The inertial effect of forces taken into account (weight) is calculated. As final result of the inverse dynamic analysis, the are obtained torques that the 4 motors must apply to repeat requested movement with the forces that were acting. The fourth approval of the model consists on confirming that the achieved movement due to the use of the torques obtained in the inverse dynamics, are in accordance with movements from kinematic analysis (theoretical movement). For this, it is necessary to work with direct dynamics. Direct dynamic is in charge of calculating the movements of robot that results from applying torques at motors and forces at the robot. Therefore, the resultant real movement, as there was no change in any condition of the ones obtained at the inverse dynamics (motor torques and inertial forces due to weight of elements) must be the same than theoretical movement. When these results are achieved, it is considered that robot is ready to work. When a machining external force is introduced and it was not taken into account before during the inverse dynamics, and torques at motors considered are the ones of the inverse dynamics, the real movement obtained is not the same than the theoretical movement. Closed loop control is based on comparing real movement with expected movement and introducing required corrrections to minimize or cancel differences. They are applied gains in the way of corrections for position and/or tolerance to remove those differences. Position error is evaluated as the difference, in each point, between theoretical movemment (calculated in the kinematic analysis) and the real movement achieved for each machining force and for an specific gain. Finally, the position error obtained for each machining force and gains are mapped, giving a chart with the best accuracy that the robot can give for each operation that has been requested and which conditions must be provided.