390 resultados para Neuropeptide
Resumo:
The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.
Resumo:
Neuropeptide Y is a 36 amino acid peptide that belongs to the pancreatic polypeptide family. It co-localises with adrenaline in sympathetic nerves and is released upon sympathetic activation resulting in vasoconstriction. In addition to its vascular effects NPY is also thought to have a role in pain modulation, angiogenesis and immunomodulation. Objectives: The aim of this study was to quantify the levels of NPY in human dental pulp tissue from intact and grossly carious teeth and to relate these results to pain experience. Methods: A total of 48 permanent teeth [mean age 32.1(+/- 11.2 years)] were included in the study, of these 22 were intact and 26 were grossly carious. In the grossly carious group, 17 teeth were reported painful prior to extraction and the remainder were reported non-painful. NPY was measured using a sensitive and specific radioimmunoassay which has been previously described. Pain was scored as either present or absent in all the teeth studied. Results: Of particular interest in this study was the finding that NPY levels were significantly higher in dental pulp tissue from non-painful grossly carious teeth (p= 0.006) compared with painful grossly carious teeth. Conclusions: The increased levels of NPY reported in non-painful grossly carious teeth may suggest a role for NPY in pain modulation in human dental pulp.
Resumo:
Objectives: To determine whether neuropeptide Y (NPY) is present in gingival crevicular fluid (GCF) in both periodontal health and disease and to study the relationship of NPY with periodontal inflammation. Methods: GCF samples (30 s) were collected from one site with both pocket depth (>4mm) and loss of periodontal attachment (>4mm) in 20 patients with chronic periodontitis (mean age 41.4, SD 9.6 yrs; 10 m, 10 f). GCF was also collected from clinically healthy sites (< 3mm, no bleeding on probing) in 20 subjects with no periodontitis (mean age 37.4, SD 11.7; 10 m, 10 f). GCF was collected using the periopaper strip method, diluted in 500 ul of phosphate-buffered saline and stored at –70°C. Samples were analysed in duplicate for NPY by radioimmunoassay. NPY levels were compared using the Mann-Whitney test. Results: Measurable NPY was present in all the GCF samples collected from healthy subjects. NPY was below the level of detection in 4 (20%) of the diseased subjects. There was considerable variability in the amount of NPY collected from both groups. There were no differences between the levels of NPY measured in males compared with females in either the healthy or diseased groups. Significantly more (P< 0.0001) NPY (pg) was collected from healthy subjects (Median 165, IQR 80; mean 161, SD 64) than diseased subjects (Median 37.5, IQR 56.3; mean 39.8, SD 35.1). There was more variability in the NPY concentration (pg/ul) which was also significantly higher in healthy (Median 575.7, IQR 562.3; mean 645.7, SD 416.7) compared with diseased subjects (Median 43.6, IQR 117.4; mean 96.4, SD 124.5). Conclusions: It is concluded that the levels of NPY in GCF sampled
Resumo:
Neuropeptide Y (NPY) is a 36 amino acid peptide that is abundantly expressed in both the central and peripheral nervous systems. NPY has previously been shown to be present in human dental pulp although its exact role in pulpal health and disease remains to be fully elucidated. In addition to serving a neurotransmitter role, NPY may also have a role in modulating the pulpal response to injury and inflammation. Indeed NPY is known to be a potent vasoconstrictor in a range of tissues. Recent work by our research group has demonstrated changes in sensory neuropeptide levels measured by radioimmunoassay (RIA) in healthy and carious teeth. In addition to elevated levels of sensory neuropeptides, it is also possible that the carious process is associated with increased levels of autonomic neuropeptides such as NPY. Objectives: The aim of the present study was to undertake a comprehensive quantitative RIA analysis of NPY expression in human dental pulps from carious and non-carious teeth. Methods: A total of 22 non-carious and 46 carious teeth were included in the study. NPY was measured in all samples using RIA. Briefly, the RIA system consisted of a total volume of 400 ul, comprising 100 ul anti-NPY antibody (Peninsula Laboratories), 200 ul human NPY synthetic standard or pulp sample, and 100 ul of 125I-labelled NPY as radioactive tracer. Results: The mean concentration of NPY in non-carious teeth was found to be 4.28 ng/g (4.34 SD) compared to 9.57 ng/g (9.39 SD) in carious teeth. Using ANOVA the difference in NPY levels between the non-carious group and the carious group was found to be statistically significant (p= 0.003). Conclusion: The significant increase in the levels of NPY in carious dental pulps reported in this study provides evidence for a role for NPY in the pulpal response to caries.
Resumo:
Objectives: The inflammatory response to pulpal injury or infection has major clinical significance. The aim of the study is to investigate the presence and regulation of expression of neuropeptide receptors on human pulp fibroblasts and whole pulp tissue. This study will investigate the expression of Substance P (NK-1) and Neuropeptide Y (NPY-Y1) receptors on pulp fibroblasts, determine the effects of Transforming Growth Factor Beta-1 (TGF-b1) and Interleukin 1-Beta (IL-1b) on the expression of NK-1 and NPY-Y1 receptors on pulp fibroblasts and examine the levels of receptor expression in whole pulp samples. Methods: Primary pulp fibroblast cell lines were obtained from patients undergoing extractions for orthodontic reasons. The cells were grown to confluence and stimulated for 5 days with IL-1b or TGF-b1. Pulp tissue fragments were obtained from freshly extracted sound and carious teeth, snap frozen in liquid nitrogen and cracked open using a vice. The monolayer was removed with cell scrapers and pelleted. The cell membranes of the cultured cells and the whole tissue were isolated using a Mem-PER® Eukaryotic Membrane Protein Extraction Reagent Kit (Pierce, UK). The membrane proteins were separated by SDS-PAGE and Western blotting was used to detect the presence of NK-1 and NPY-Y1. Results: Initial results demonstrated the presence of NK-1 and NPY-Y1 in cultured pulp fibroblasts. Following the 5 day incubation with TGF-b1, the cells appeared not to express NK-1. IL-1b had a slight stimulatory effect on NK-1 expression. The NPY-Y1 expression was not affected by either TGF-b1 or IL-1b. In whole pulp samples, levels of NK-1 were increased in carious teeth compared to caries-free teeth. The NPY-Y1 levels were similar in carious and non-carious teeth. Conclusion: These findings give an insight into how pulp cells react to inflammatory stimuli with regards to neuropeptide receptor expression and their roles in health and disease
Resumo:
Dissertação de mest.Ciências Biomédicas. Departamento de Ciências Biomédicas e Medicina, Univ. do Algarve, 2011