953 resultados para Neural control
Resumo:
Motor retardation is a common symptom of major depressive disorder (MDD). Despite the existence of various assessment methods, little is known on the pathobiology of motor retardation. We aimed to elucidate aspects of motor control investigating the association of objective motor activity and resting state cerebral blood flow (CBF).
Resumo:
This thesis is focused on the control of a system with recycle. A new control strategy using neural network combined with PID controller was proposed. The combined controller was studied and tested on the pressure control of a vaporizer inside a para-xylene production process. The major problems are the negative effects of recycle and the delays on instability and performance. The neural network was designed to move the process close to the set points while the PID accomplishes the finer level of disturbance rejection and offset reductions. Our simulation results show that during control, the neural network was able to determine the nonlinear relationship between steady state and manipulated variables. The results also show the disturbance rejection was handled by PID controller effectively.
Resumo:
In June 1995 a case-control study was initiated by the Texas Department of Health among Mexican American women residing in the fourteen counties of the Texas-Mexico border. Case-women had carried infants with neural tube defect. Control-women had given birth to infants without neural tube defects. The case-control protocol included a general questionnaire which elicited information regarding illnesses experienced and antibiotics taken from three months prior to conception to three months after conception. An assessment of the associations between periconceptional diarrhea and the risk of neural tube defects indicated that the unadjusted association of diarrhea and risk of neural tube defect was significant (OR = 3.3, CI = 1.4–7.6). The unadjusted association of use of oral antimicrobials and risk of neural tube defect was also significant (OR = 3.4, CI = 1.6–7.3). These associations persisted among women who had no fever during the periconceptional period and were present irrespective of folate intake. Diarrhea was associated with an increased risk of NTD independent of use of antimicrobials. The converse was also true; antimicrobials were associated with an increased risk of NTD independent of diarrhea. Further research regarding these potentially modifiable risk factors is warranted. Replication of these findings could result in interventions in addition to folate supplementation. ^
Resumo:
Recent studies have reported positive associations between maternal exposures to air pollutants and several adverse birth outcomes. However, there have been no assessments of the association between environmental hazardous air pollutants (HAPs) such as benzene, toluene, ethylbenzene, and xylene (BTEX) and neural tube defects (NTDs) a common and serious group of congenital malformations. Before examining this association, two important methodological questions must be addressed: (1) is maternal residential movement likely to result in exposure misclassification and (2) is it appropriate to lump defects of the neural tube, such as anencephaly and spina bifida, into a composite disease endpoint (i.e., NTDs). ^ Data from the National Birth Defects Prevention Study and Texas Birth Defects Registry were used to: (1) assess the extent to which change of residence may result in exposure misclassification when exposure is based on the address at delivery; (2) formally assess heterogeneity of the associations between known risk factors for NTDs, using polytomous logistic regression; and (3) conduct a case-control study assessing the association between ambient air levels of BTEX and the risk of NTDs among offspring. ^ Regarding maternal residential mobility, this study suggests address at delivery was not significantly different from using address at conception when assigning quartile of benzene exposure (OR 1.0, 95% CI 0.9, 1.3). On the question of effect heterogeneity among NTDs, the effect estimates for infant sex P = 0.017), maternal body mass index P = 0.016), and folate supplementation P = 0.050) were significantly different for anencephaly and spina bifida, suggesting it is often more appropriate to assess potential risk factors among subgroups of NTDs. For the main study question on the association between environmental HAPs and NTDs, mothers who have offspring with isolated spina bifida are 2.4 times likely to live in areas with the highest benzene levels (95% CI 1.1, 5.0). However, no other significant associations were observed.^ This project is the first to include not only an assessment of the relationship between environmental levels of BTEX and NTDs, but also two separate studies addressing important methodological issues associated with this question. Our results contribute to the growing body of evidence regarding air pollutant exposure and adverse birth outcomes. ^
Resumo:
This paper presents results from the first use of neural networks for the real-time feedback control of high temperature plasmas in a Tokamak fusion experiment. The Tokamak is currently the principal experimental device for research into the magnetic confinement approach to controlled fusion. In the Tokamak, hydrogen plasmas, at temperatures of up to 100 Million K, are confined by strong magnetic fields. Accurate control of the position and shape of the plasma boundary requires real-time feedback control of the magnetic field structure on a time-scale of a few tens of microseconds. Software simulations have demonstrated that a neural network approach can give significantly better performance than the linear technique currently used on most Tokamak experiments. The practical application of the neural network approach requires high-speed hardware, for which a fully parallel implementation of the multi-layer perceptron, using a hybrid of digital and analogue technology, has been developed.
Resumo:
In this paper we explore the practical use of neural networks for controlling complex non-linear systems. The system used to demonstrate this approach is a simulation of a gas turbine engine typical of those used to power commercial aircraft. The novelty of the work lies in the requirement for multiple controllers which are used to maintain system variables in safe operating regions as well as governing the engine thrust.
Resumo:
In the present paper the problems of the optimal control of systems when constraints are imposed on the control is considered. The optimality conditions are given in the form of Pontryagin’s maximum principle. The obtained piecewise linear function is approximated by using feedforward neural network. A numerical example is given.
Resumo:
Belief-desire reasoning is a core component of 'Theory of Mind' (ToM), which can be used to explain and predict the behaviour of agents. Neuroimaging studies reliably identify a network of brain regions comprising a 'standard' network for ToM, including temporoparietal junction and medial prefrontal cortex. Whilst considerable experimental evidence suggests that executive control (EC) may support a functioning ToM, co-ordination of neural systems for ToM and EC is poorly understood. We report here use of a novel task in which psychologically relevant ToM parameters (true versus false belief; approach versus avoidance desire) were manipulated orthogonally. The valence of these parameters not only modulated brain activity in the 'standard' ToM network but also in EC regions. Varying the valence of both beliefs and desires recruits anterior cingulate cortex, suggesting a shared inhibitory component associated with negatively valenced mental state concepts. Varying the valence of beliefs additionally draws on ventrolateral prefrontal cortex, reflecting the need to inhibit self perspective. These data provide the first evidence that separate functional and neural systems for EC may be recruited in the service of different aspects of ToM.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
In this paper, a real-time optimal control technique for non-linear plants is proposed. The control system makes use of the cell-mapping (CM) techniques, widely used for the global analysis of highly non-linear systems. The CM framework is employed for designing approximate optimal controllers via a control variable discretization. Furthermore, CM-based designs can be improved by the use of supervised feedforward artificial neural networks (ANNs), which have proved to be universal and efficient tools for function approximation, providing also very fast responses. The quantitative nature of the approximate CM solutions fits very well with ANNs characteristics. Here, we propose several control architectures which combine, in a different manner, supervised neural networks and CM control algorithms. On the one hand, different CM control laws computed for various target objectives can be employed for training a neural network, explicitly including the target information in the input vectors. This way, tracking problems, in addition to regulation ones, can be addressed in a fast and unified manner, obtaining smooth, averaged and global feedback control laws. On the other hand, adjoining CM and ANNs are also combined into a hybrid architecture to address problems where accuracy and real-time response are critical. Finally, some optimal control problems are solved with the proposed CM, neural and hybrid techniques, illustrating their good performance.
Resumo:
In this thesis, the problem of controlling a quadrotor UAV is considered. It is done by presenting an original control system, designed as a combination of Neural Networks and Disturbance Observer, using a composite learning approach for a system of the second order, which is a novel methodology in literature. After a brief introduction about the quadrotors, the concepts needed to understand the controller are presented, such as the main notions of advanced control, the basic structure and design of a Neural Network, the modeling of a quadrotor and its dynamics. The full simulator, developed on the MATLAB Simulink environment, used throughout the whole thesis, is also shown. For the guidance and control purposes, a Sliding Mode Controller, used as a reference, it is firstly introduced, and its theory and implementation on the simulator are illustrated. Finally the original controller is introduced, through its novel formulation, and implementation on the model. The effectiveness and robustness of the two controllers are then proven by extensive simulations in all different conditions of external disturbance and faults.
Resumo:
The maintenance of glucose homeostasis is complex and involves, besides the secretion and action of insulin and glucagon, a hormonal and neural mechanism, regulating the rate of gastric emptying. This mechanism depends on extrinsic and intrinsic factors. Glucagon-like peptide-1 secretion regulates the speed of gastric emptying, contributing to the control of postprandial glycemia. The pharmacodynamic characteristics of various agents of this class can explain the effects more relevant in fasting or postprandial glucose, and can thus guide the individualized treatment, according to the clinical and pathophysiological features of each patient.
Resumo:
Happy emotional states have not been extensively explored in functional magnetic resonance imaging studies using autobiographic recall paradigms. We investigated the brain circuitry engaged during induction of happiness by standardized script-driven autobiographical recall in 11 healthy subjects (6 males), aged 32.4 ± 7.2 years, without physical or psychiatric disorders, selected according to their ability to vividly recall personal experiences. Blood oxygen level-dependent (BOLD) changes were recorded during auditory presentation of personal scripts of happiness, neutral content and negative emotional content (irritability). The same uniform structure was used for the cueing narratives of both emotionally salient and neutral conditions, in order to decrease the variability of findings. In the happiness relative to the neutral condition, there was an increased BOLD signal in the left dorsal prefrontal cortex and anterior insula, thalamus bilaterally, left hypothalamus, left anterior cingulate gyrus, and midportions of the left middle temporal gyrus (P < 0.05, corrected for multiple comparisons). Relative to the irritability condition, the happiness condition showed increased activity in the left insula, thalamus and hypothalamus, and in anterior and midportions of the inferior and middle temporal gyri bilaterally (P < 0.05, corrected), varying in size between 13 and 64 voxels. Findings of happiness-related increased activity in prefrontal and subcortical regions extend the results of previous functional imaging studies of autobiographical recall. The BOLD signal changes identified reflect general aspects of emotional processing, emotional control, and the processing of sensory and bodily signals associated with internally generated feelings of happiness. These results reinforce the notion that happiness induction engages a wide network of brain regions.
Resumo:
Classical and operant conditioning principles, such as the behavioral discrepancy-derived assumption that reinforcement always selects antecedent stimulus and response relations, have been studied at the neural level, mainly by observing the strengthening of neuronal responses or synaptic connections. A review of the literature on the neural basis of behavior provided extensive scientific data that indicate a synthesis between the two conditioning processes based mainly on stimulus control in learning tasks. The resulting analysis revealed the following aspects. Dopamine acts as a behavioral discrepancy signal in the midbrain pathway of positive reinforcement, leading toward the nucleus accumbens. Dopamine modulates both types of conditioning in the Aplysia mollusk and in mammals. In vivo and in vitro mollusk preparations show convergence of both types of conditioning in the same motor neuron. Frontal cortical neurons are involved in behavioral discrimination in reversal and extinction procedures, and these neurons preferentially deliver glutamate through conditioned stimulus or discriminative stimulus pathways. Discriminative neural responses can reliably precede operant movements and can also be common to stimuli that share complex symbolic relations. The present article discusses convergent and divergent points between conditioning paradigms at the neural level of analysis to advance our knowledge on reinforcement.