980 resultados para Neural Signal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep Brain Stimulation (DBS) has been successfully used throughout the world for the treatment of Parkinson's disease symptoms. To control abnormal spontaneous electrical activity in target brain areas DBS utilizes a continuous stimulation signal. This continuous power draw means that its implanted battery power source needs to be replaced every 18–24 months. To prolong the life span of the battery, a technique to accurately recognize and predict the onset of the Parkinson's disease tremors in human subjects and thus implement an on-demand stimulator is discussed here. The approach is to use a radial basis function neural network (RBFNN) based on particle swarm optimization (PSO) and principal component analysis (PCA) with Local Field Potential (LFP) data recorded via the stimulation electrodes to predict activity related to tremor onset. To test this approach, LFPs from the subthalamic nucleus (STN) obtained through deep brain electrodes implanted in a Parkinson patient are used to train the network. To validate the network's performance, electromyographic (EMG) signals from the patient's forearm are recorded in parallel with the LFPs to accurately determine occurrences of tremor, and these are compared to the performance of the network. It has been found that detection accuracies of up to 89% are possible. Performance comparisons have also been made between a conventional RBFNN and an RBFNN based on PSO which show a marginal decrease in performance but with notable reduction in computational overhead.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a new image data fusion scheme by combining median filtering with self-organizing feature map (SOFM) neural networks. The scheme consists of three steps: (1) pre-processing of the images, where weighted median filtering removes part of the noise components corrupting the image, (2) pixel clustering for each image using self-organizing feature map neural networks, and (3) fusion of the images obtained in Step (2), which suppresses the residual noise components and thus further improves the image quality. It proves that such a three-step combination offers an impressive effectiveness and performance improvement, which is confirmed by simulations involving three image sensors (each of which has a different noise structure).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the application of weightless neural networks (WNNs) to the problem of face recognition and compares the results with those provided using a more complicated multiple neural network approach. WNNs have significant advantages over the more common forms of neural networks, in particular in term of speed of operation and learning. A major difficulty when applying neural networks to face recognition problems is the high degree of variability in expression, pose and facial details: the generalisation properties of a WNN can be crucial. In the light of this problem a software simulator of a WNN has been built and the results of some initial tests are presented and compared with other techniques

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a new nonlinear digital baseband predistorter design is introduced based on direct learning, together with a new Wiener system modeling approach for the high power amplifiers (HPA) based on the B-spline neural network. The contribution is twofold. Firstly, by assuming that the nonlinearity in the HPA is mainly dependent on the input signal amplitude the complex valued nonlinear static function is represented by two real valued B-spline neural networks, one for the amplitude distortion and another for the phase shift. The Gauss-Newton algorithm is applied for the parameter estimation, in which the De Boor recursion is employed to calculate both the B-spline curve and the first order derivatives. Secondly, we derive the predistorter algorithm calculating the inverse of the complex valued nonlinear static function according to B-spline neural network based Wiener models. The inverse of the amplitude and phase shift distortion are then computed and compensated using the identified phase shift model. Numerical examples have been employed to demonstrate the efficacy of the proposed approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new model-based proportional–integral–derivative (PID) tuning and controller approach is introduced for Hammerstein systems that are identified on the basis of the observational input/output data. The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The control signal is composed of a PID controller, together with a correction term. Both the parameters in the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized to demonstrate the efficacy of the proposed approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new PID tuning and controller approach is introduced for Hammerstein systems based on input/output data. A B-spline neural network is used to model the nonlinear static function in the Hammerstein system. The control signal is composed of a PID controller together with a correction term. In order to update the control signal, the multistep ahead predictions of the Hammerstein system based on the B-spline neural networks and the associated Jacobians matrix are calculated using the De Boor algorithms including both the functional and derivative recursions. A numerical example is utilized to demonstrate the efficacy of the proposed approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain activity can be measured with several non-invasive neuroimaging modalities, but each modality has inherent limitations with respect to resolution, contrast and interpretability. It is hoped that multimodal integration will address these limitations by using the complementary features of already available data. However, purely statistical integration can prove problematic owing to the disparate signal sources. As an alternative, we propose here an advanced neural population model implemented on an anatomically sound cortical mesh with freely adjustable connectivity, which features proper signal expression through a realistic head model for the electroencephalogram (EEG), as well as a haemodynamic model for functional magnetic resonance imaging based on blood oxygen level dependent contrast (fMRI BOLD). It hence allows simultaneous and realistic predictions of EEG and fMRI BOLD from the same underlying model of neural activity. As proof of principle, we investigate here the influence on simulated brain activity of strengthening visual connectivity. In the future we plan to fit multimodal data with this neural population model. This promises novel, model-based insights into the brain's activity in sleep, rest and task conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dependency of the blood oxygenation level dependent (BOLD) signal on underlying hemodynamics is not well understood. Building a forward biophysical model of this relationship is important for the quantitative estimation of the hemodynamic changes and neural activity underlying functional magnetic resonance imaging (fMRI) signals. We have developed a general model of the BOLD signal which can model both intra- and extravascular signals for an arbitrary tissue model across a wide range of imaging parameters. The model of the BOLD signal was instantiated as a look-up-table (LuT), and was verified against concurrent fMRI and optical imaging measurements of activation induced hemodynamics. Magn Reson Med, 2008. © 2008 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although promise exists for patterns of resting-state blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) brain connectivity to be used as biomarkers of early brain pathology, a full understanding of the nature of the relationship between neural activity and spontaneous fMRI BOLD fluctuations is required before such data can be correctly interpreted. To investigate this issue, we combined electrophysiological recordings of rapid changes in multi-laminar local field potentials from the somatosensory cortex of anaesthetized rats with concurrent two-dimensional optical imaging spectroscopy measurements of resting-state haemodynamics that underlie fluctuations in the BOLD fMRI signal. After neural ‘events’ were identified, their time points served to indicate the start of an epoch in the accompanying haemodynamic fluctuations. Multiple epochs for both neural ‘events’ and the accompanying haemodynamic fluctuations were averaged. We found that the averaged epochs of resting-state haemodynamic fluctuations taken after neural ‘events’ closely resembled the temporal profile of stimulus-evoked cortical haemodynamics. Furthermore, we were able to demonstrate that averaged epochs of resting-state haemodynamic fluctuations resembling the temporal profile of stimulus-evoked haemodynamics could also be found after peaks in neural activity filtered into specific electroencephalographic frequency bands (theta, alpha, beta, and gamma). This technique allows investigation of resting-state neurovascular coupling using methodologies that are directly comparable to that developed for investigating stimulus-evoked neurovascular responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Communication signal processing applications often involve complex-valued (CV) functional representations for signals and systems. CV artificial neural networks have been studied theoretically and applied widely in nonlinear signal and data processing [1–11]. Note that most artificial neural networks cannot be automatically extended from the real-valued (RV) domain to the CV domain because the resulting model would in general violate Cauchy-Riemann conditions, and this means that the training algorithms become unusable. A number of analytic functions were introduced for the fully CV multilayer perceptrons (MLP) [4]. A fully CV radial basis function (RBF) nework was introduced in [8] for regression and classification applications. Alternatively, the problem can be avoided by using two RV artificial neural networks, one processing the real part and the other processing the imaginary part of the CV signal/system. A even more challenging problem is the inverse of a CV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many communication signal processing applications involve modelling and inverting complex-valued (CV) Hammerstein systems. We develops a new CV B-spline neural network approach for efficient identification of the CV Hammerstein system and effective inversion of the estimated CV Hammerstein model. Specifically, the CV nonlinear static function in the Hammerstein system is represented using the tensor product from two univariate B-spline neural networks. An efficient alternating least squares estimation method is adopted for identifying the CV linear dynamic model’s coefficients and the CV B-spline neural network’s weights, which yields the closed-form solutions for both the linear dynamic model’s coefficients and the B-spline neural network’s weights, and this estimation process is guaranteed to converge very fast to a unique minimum solution. Furthermore, an accurate inversion of the CV Hammerstein system can readily be obtained using the estimated model. In particular, the inversion of the CV nonlinear static function in the Hammerstein system can be calculated effectively using a Gaussian-Newton algorithm, which naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. The effectiveness of our approach is demonstrated using the application to equalisation of Hammerstein channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-carrier (SC) block transmission with frequency-domain equalisation (FDE) offers a viable transmission technology for combating the adverse effects of long dispersive channels encountered in high-rate broadband wireless communication systems. However, for high bandwidthefficiency and high power-efficiency systems, the channel can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such nonlinear Hammerstein channels, the standard SC-FDE scheme no longer works. This paper advocates a complex-valued (CV) B-spline neural network based nonlinear SC-FDE scheme for Hammerstein channels. Specifically, We model the nonlinear HPA, which represents the CV static nonlinearity of the Hammerstein channel, by a CV B-spline neural network, and we develop two efficient alternating least squares schemes for estimating the parameters of the Hammerstein channel, including both the channel impulse response coefficients and the parameters of the CV B-spline model. We also use another CV B-spline neural network to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse B-spline neural network model obtained in time domain. Extensive simulation results are included to demonstrate the effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses ECG classification after parametrizing the ECG waveforms in the wavelet domain. The aim of the work is to develop an accurate classification algorithm that can be used to diagnose cardiac beat abnormalities detected using a mobile platform such as smart-phones. Continuous time recurrent neural network classifiers are considered for this task. Records from the European ST-T Database are decomposed in the wavelet domain using discrete wavelet transform (DWT) filter banks and the resulting DWT coefficients are filtered and used as inputs for training the neural network classifier. Advantages of the proposed methodology are the reduced memory requirement for the signals which is of relevance to mobile applications as well as an improvement in the ability of the neural network in its generalization ability due to the more parsimonious representation of the signal to its inputs.