998 resultados para Neural Conduction
Resumo:
Previous studies have demonstrated that pattern recognition approaches to accelerometer data reduction are feasible and moderately accurate in classifying activity type in children. Whether pattern recognition techniques can be used to provide valid estimates of physical activity (PA) energy expenditure in youth remains unexplored in the research literature. Purpose: The objective of this study is to develop and test artificial neural networks (ANNs) to predict PA type and energy expenditure (PAEE) from processed accelerometer data collected in children and adolescents. Methods: One hundred participants between the ages of 5 and 15 yr completed 12 activity trials that were categorized into five PA types: sedentary, walking, running, light-intensity household activities or games, and moderate-to-vigorous intensity games or sports. During each trial, participants wore an ActiGraph GTIM on the right hip, and (V) Over dotO(2) was measured using the Oxycon Mobile (Viasys Healthcare, Yorba Linda, CA) portable metabolic system. ANNs to predict PA type and PAEE (METs) were developed using the following features: 10th, 25th, 50th, 75th, and 90th percentiles and the lag one autocorrelation. To determine the highest time resolution achievable, we extracted features from 10-, 15-, 20-, 30-, and 60-s windows. Accuracy was assessed by calculating the percentage of windows correctly classified and root mean square en-or (RMSE). Results: As window size increased from 10 to 60 s, accuracy for the PA-type ANN increased from 81.3% to 88.4%. RMSE for the MET prediction ANN decreased from 1.1 METs to 0.9 METs. At any given window size, RMSE values for the MET prediction ANN were 30-40% lower than the conventional regression-based approaches. Conclusions: ANNs can be used to predict both PA type and PAEE in children and adolescents using count data from a single waist mounted accelerometer.
Resumo:
An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~. 75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~. 150. ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives. © 2013.
Resumo:
The ionization energy theory is used to calculate the evolution of the resistivity and specific heat curves with respect to different doping elements in the recently discovered superconducting pnictide materials. Electron-conduction mechanism in the pnictides above the structural transition temperature is explained unambiguously, which is also consistent with other strongly correlated materials, such as cuprates, manganites, titanates and magnetic semiconductors.
Resumo:
The ability to inhibit unwanted actions is a heritable executive function that may confer risk to disorders such as attention deficit hyperactivity disorder (ADHD). Converging evidence from pharmacology and cognitive neuroscience suggests that response inhibition is instantiated within frontostriatal circuits of the brain with patterns of activity that are modulated by the catecholamines dopamine and noradrenaline. A total of 405 healthy adult participants performed the stop-signal task, a paradigmatic measure of response inhibition that yields an index of the latency of inhibition, termed the stop-signal reaction time (SSRT). Using this phenotype, we tested for genetic association, performing high-density single-nucleotide polymorphism mapping across the full range of autosomal catecholamine genes. Fifty participants also underwent functional magnetic resonance imaging to establish the impact of associated alleles on brain and behaviour. Allelic variation in polymorphisms of the dopamine transporter gene (SLC6A3: rs37020; rs460000) predicted individual differences in SSRT, after corrections for multiple comparisons. Furthermore, activity in frontal regions (anterior frontal, superior frontal and superior medial gyri) and caudate varied additively with the T-allele of rs37020. The influence of genetic variation in SLC6A3 on the development of frontostriatal inhibition networks may represent a key risk mechanism for disorders of behavioural inhibition.
Resumo:
A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.
Resumo:
Emotionally arousing events can distort our sense of time. We used mixed block/event-related fMRI design to establish the neural basis for this effect. Nineteen participants were asked to judge whether angry, happy and neutral facial expressions that varied in duration (from 400 to 1,600 ms) were closer in duration to either a short or long duration they learnt previously. Time was overestimated for both angry and happy expressions compared to neutral expressions. For faces presented for 700 ms, facial emotion modulated activity in regions of the timing network Wiener et al. (NeuroImage 49(2):1728–1740, 2010) namely the right supplementary motor area (SMA) and the junction of the right inferior frontal gyrus and anterior insula (IFG/AI). Reaction times were slowest when faces were displayed for 700 ms indicating increased decision making difficulty. Taken together with existing electrophysiological evidence Ng et al. (Neuroscience, doi: 10.3389/fnint.2011.00077, 2011), the effects are consistent with the idea that facial emotion moderates temporal decision making and that the right SMA and right IFG/AI are key neural structures responsible for this effect.
Resumo:
The current research was designed to establish whether individual differences in timing performance predict neural activation in the areas that subserve the perception of short durations ranging between 400 and 1600 milliseconds. Seventeen participants completed both a temporal bisection task and a control task, in a mixed fMRI design. In keeping with previous research, there was increased activation in a network of regions typically active during time perception including the right supplementary motor area (SMA) and right pre-SMA and basal ganglia (including the putamen and right pallidum). Furthermore, correlations between neural activity in the right inferior frontal gyrus and SMA and timing performance corroborate the results of a recent meta-analysis and are further evidence that the SMA forms part of a neural clock that is responsible for the accumulation of temporal information. Specifically, subjective lengthening of the perceived duration were associated with increased activation in both the right SMA (and right pre-SMA) and right inferior frontal gyrus.
Resumo:
This paper introduces a new method to automate the detection of marine species in aerial imagery using a Machine Learning approach. Our proposed system has at its core, a convolutional neural network. We compare this trainable classifier to a handcrafted classifier based on color features, entropy and shape analysis. Experiments demonstrate that the convolutional neural network outperforms the handcrafted solution. We also introduce a negative training example-selection method for situations where the original training set consists of a collection of labeled images in which the objects of interest (positive examples) have been marked by a bounding box. We show that picking random rectangles from the background is not necessarily the best way to generate useful negative examples with respect to learning.
Resumo:
The present study investigated the behavioral and neuropsychological characteristics of decision-making behavior during a gambling task as well as how these characteristics may relate to the Somatic Marker Hypothesis and the Frequency of Gain model. The applicability to intertemporal choice was also discussed. Patterns of card selection during a computerized interpretation of the Iowa Gambling Task were assessed for 10 men and 10 women. Steady State Topography was employed to assess cortical processing throughout this task. Results supported the hypothesis that patterns of card selection were in line with both theories. As hypothesized, these 2 patterns of card selection were also associated with distinct patterns of cortical activity, suggesting that intertemporal choice may involve the recruitment of right dorsolateral prefrontal cortex for somatic labeling, left fusiform gyrus for object representations, and the left dorsolateral prefrontal cortex for an analysis of the associated frequency of gain or loss. It is suggested that processes contributing to intertemporal choice may include inhibition of negatively valenced options, guiding decisions away from those options, as well as computations favoring frequently rewarded options.
Resumo:
Rodent (mouse and rat) models have been crucial in developing our understanding of human neurogenesis and neural stem cell (NSC) biology. The study of neurogenesis in rodents has allowed us to begin to understand adult human neurogenesis and in particular, protocols established for isolation and in vitro propagation of rodent NSCs have successfully been applied to the expansion of human NSCs. Furthermore, rodent models have played a central role in studying NSC function in vivo and in the development of NSC transplantation strategies for cell therapy applications. Rodents and humans share many similarities in the process of neurogenesis and NSC biology however distinct species differences are important considerations for the development of more efficient human NSC therapeutic applications. Here we review the important contributions rodent studies have had to our understanding of human neurogenesis and to the development of in vitro and in vivo NSC research. Species differences will be discussed to identify key areas in need of further development for human NSC therapy applications.
Resumo:
Recently Convolutional Neural Networks (CNNs) have been shown to achieve state-of-the-art performance on various classification tasks. In this paper, we present for the first time a place recognition technique based on CNN models, by combining the powerful features learnt by CNNs with a spatial and sequential filter. Applying the system to a 70 km benchmark place recognition dataset we achieve a 75% increase in recall at 100% precision, significantly outperforming all previous state of the art techniques. We also conduct a comprehensive performance comparison of the utility of features from all 21 layers for place recognition, both for the benchmark dataset and for a second dataset with more significant viewpoint changes.
Resumo:
Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA), support vector machines (SVM) and ensembles of neural networks (ENN). Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97%) consistently outperformed SVMs (mean identification rate – 87%). Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.