813 resultados para Neoplastic
Resumo:
Mesothelioma is a rare malignancy arising from mesothelial cells lining the pleura and peritoneum. Advances in modern technology have allowed the development of array based approaches to the study of disease allowing researchers the opportunity to study many genes or proteins in a high-throughput fashion. This review describes the current knowledge surrounding array based approaches with respect to mesothelioma research. © 2009 by the International Association for the Study of Lung Cancer.
Resumo:
Background: To directly assess tumor oxygenation in resectable non - small cell lung cancers (NSCLC) and to correlate tumor pO2 and the selected gene and protein expression to treatment outcomes. Methods: Twenty patients with resectable NSCLC were enrolled. Intraoperative measurements of normal lung and tumor pO2 were done with the Eppendorf polarographic electrode. All patients had plasma osteopontin measurements by ELISA. Carbonic anhydrase-IX (CA IX) staining of tumor sections was done in the majority of patients (n = 16), as was gene expression profiling (n = 12) using cDNA microarrays. Tumor pO2 was correlated with CA IX staining, osteopontin levels, and treatment outcomes. Results: The median tumor pO2 ranged from 0.7 to 46 mm Hg (median, 16.6) and was lower than normal lung pO2 in all but one patient. Because both variables were affected by the completeness of lung deflation during measurement, we used the ratio of tumor/normal lung (T/L) pO2 as a reflection of tumor oxygenation. The median T/L pO 2 was 0.13. T/L pO2 correlated significantly with plasma osteopontin levels (r = 0.53, P = 0.02) and CA IX expression (P = 0.006). Gene expression profiling showed that high CD44 expression was a predictor for relapse, which was confirmed by tissue staining of CD44 variant 6 protein. Other variables associated with the risk of relapse were T stage (P = 0.02), T/L pO2 (P = 0.04), and osteopontin levels (P = 0.001). Conclusions: Tumor hypoxia exists in resectable NSCLC and is associated with elevated expression of osteopontin and CA IX. Tumor hypoxia and elevated osteopontin levels and CD44 expression correlated with poor prognosis. A larger study is needed to confirm the prognostic significance of these factors. © 2006 American Association for Cancer Research.
Resumo:
Several chronic infections known to be associated with malignancy have established oncogenic properties. However the existence of chronic inflammatory conditions that do not have an established infective cause and are associated with the development of tumours strongly suggests that the inflammatory process itself provides the prerequisite environment for the development of malignancy. This environment includes upregulation of mediators of the inflammatory response such as cyclo-oxygenase (COX)-2 leading to the production of inflammatory cytokines and prostaglandins which themselves may suppress cell mediated immune responses and promote angiogenesis. These factors may also impact on cell growth and survival signalling pathways resulting in induction of cell proliferation and inhibition of apoptosis. Furthermore, chronic inflammation may lead to the production of reactive oxygen species and metabolites such as malondialdehyde within the affected cells that may in turn induce DNA damage and mutations and, as a result, be carcinogenic. Here it is proposed that the conditions provided by a chronic inflammatory environment are so essential for the progression of the neoplastic process that therapeutic intervention aimed at inhibiting inflammation, reducing angiogenesis and stimulating cell mediated immune responses may have a major role in reducing the incidence of common cancers. © 2001 Cancer Research Campaign http://www.bjcancer.com.
Resumo:
Angiogenesis, the formation of new blood vessels from existing vasculature, is essential to the late stages of carcinogenesis, allowing tumours to grow beyond 1-2 mm in diameter, invade surrounding tissue, and metastasise. However, more than two decades ago, angiogenesis that preceded neoplastic transformation was seen. Indeed, it can be detected in inflammatory and infectious diseases that increase the risk of developing cancer. Recent advances in fluorescence endoscopy and histological assessment suggest that, for certain cancers, the degree of new blood-vessel formation may differ between the early and late stages of carcinogenic progression. The association between angiogenesis and cancer occurrence, and ease of detection of this process in accessible tissues early in carcinogenesis, mean that angiogenesis fulfils the criteria for a biomarker of the effectiveness of chemopreventive intervention. There is also some evidence that biochemical assays of angiogenic growth factors may after similar potential as surrogate biomarkers. Many natural and synthetic chemopreventive agents in development or in clinical use inhibit new vessel formation in vivo. Validation of angiogenesis as a biomarker for the effectiveness of chemoprevention should further the advancement of some chemopreventive agents.
Resumo:
The epidermal growth factor receptor (EGFR) is commonly expressed in non-small-cell lung cancer (NSCLC) and promotes a host of mechanisms involved in tumorigenesis. However, EGFR expression does not reliably predict prognosis or response to EGFR-targeted therapies. The data from two previous studies of a series of 181 consecutive surgically resected stage I-IIIA NSCLC patients who had survived in excess of 60 days were explored. Of these patients, tissue was available for evaluation of EGFR in 179 patients, carbonic anhydrase (CA) IX in 177 patients and matrix metalloproteinase-9 (MMP-9) in 169 patients. We have previously reported an association between EGFR expression and MMP-9 expression. We have also reported that MMP-9 (P=0.001) and perinuclear (p)CA IX (P=0.03) but not EGFR expression were associated with a poor prognosis. Perinuclear CA IX expression was also associated with EGFR expression (P<0.001). Multivariate analysis demonstrated that coexpression of MMP-9 with EGFR conferred a worse prognosis than the expression of MMP-9 alone (P<0.001) and coexpression of EGFR and pCA IX conferred a worse prognosis than pCA IX alone (P=0.05). A model was then developed where the study population was divided into three groups: group 1 had expression of EGFR without coexpression of MMP-9 or pCA IX (number=21); group 2 had no expression of EGFR (number=75); and group 3 had coexpression of EGFR with pCA IX or MMP-9 or both (number=70). Group 3 had a worse prognosis than either groups 1 or 2 (P=0.0003 and 0.027, respectively) and group 1 had a better prognosis than group 2 (P=0.036). These data identify two cohorts of EGFR-positive patients with diametrically opposite prognoses. The group expressing either EGFR and or both MMP-9 and pCA IX may identify a group of patients with activated EGFR, which is of clinical relevance with the advent of EGFR-targeted therapies. © 2004 Cancer Research UK.
Resumo:
Hypoxia-inducible factor (HIF)-1α is the regulatory subunit of HIF-1 that is stabilized under hypoxic conditions. Under different circumstances, HIF-1α may promote both tumorigenesis and apoptosis. There is conflicting data on the importance of HIF-1α as a prognostic factor. This study evaluated HIF-1α expression in 172 consecutive patients with stage I-IIIA non small cell lung cancer (NSCLC) using standard immunohistochemical techniques. The extent of HIF-1α nuclear immunostaining was determined using light microscopy and the results were analyzed using the median (5%) as a low cut-point and 60% as a high positive cut-point. Using the low cut-point, positive associations were found with epidermal growth factor receptor (EGFR; p = 0.01), matrix metalloproteinase (MMP)-9 (p = 0.003), membranous (p < 0.001) and perinuclear (p = 0.004) carbonic anhydrase (CA) IX, pS3 (p = 0.008), T-stage (p = 0.042), tumor necrosis (TN; p < 0.001) and squamous histology (p < 0.001). No significant association was found with Bcl-2 or either N- or overall TMN stage or prognosis. When the high positive cut-point was used, HIF-1α was associated with a poor prognosis (p = 0.034). In conclusion, the associations with EGFR, MMP-9, p53 and CA IX suggest that these factors may either regulate or be regulated by HIF-1α. The association with TN and squamous-type histology, which is relatively more necrotic than other NSCLC types, reflects the role of hypoxia in the regulation of HIF-1α. The prognostic data may reflect a change in the behavior of HIF-1α in increasingly hypoxic environments. © 2004 Wiley-Liss, Inc.
Resumo:
Purpose Cancer cells have been shown to be more susceptible to Ran knockdown than normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK [mitogen-activated protein/extracellular signal-regulated kinase (ERK; MEK)] and phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry [propidium iodide (PI) and Annexin V staining] and MTT assay in cancer cells grown under different conditions after knockdown of Ran. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. K-Ras-mutated, c-Met-amplified, and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of K-Ras or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. ©2011 AACR.
Resumo:
Background Ras-related nuclear protein (Ran) is required for cancer cell survival in vitro and human cancer progression, but the molecular mechanisms are largely unknown. Methods We investigated the effect of the v-myc myelocytomatosis viral oncogene homolog (Myc) on Ran expression by Western blot, chromatin immunoprecipitation, and luciferase reporter assays and the effects of Myc and Ran expression in cancer cells by soft-agar, cell adhesion, and invasion assays. The correlation between Myc and Ran and the association with patient survival were investigated in 14 independent patient cohorts (n = 2430) and analyzed with Spearman's rank correlation and Kaplan-Meier plots coupled with Wilcoxon-Gehan tests, respectively. All statistical tests were two-sided. Results Myc binds to the upstream sequence of Ran and transactivates Ran promoter activity. Overexpression of Myc upregulates Ran expression, whereas knockdown of Myc downregulates Ran expression. Myc or Ran overexpression in breast cancer cells is associated with cancer progression and metastasis. Knockdown of Ran reverses the effect induced by Myc overexpression in breast cancer cells. In clinical data, a positive association between Myc and Ran expression was revealed in 288 breast cancer and 102 lung cancer specimens. Moreover, Ran expression levels differentiate better or poorer survival in Myc overexpressing breast (χ2 = 24.1; relative risk [RR] = 9.1, 95% confidence interval [CI] = 3.3 to 24.7, P <. 001) and lung (χ2 = 6.04; RR = 2.8, 95% CI = 1.2 to 6.3; P =. 01) cancer cohorts. Conclusions Our results suggest that Ran is required for and is a potential therapeutic target of Myc-driven cancer progression in both breast and lung cancers. © 2013 The Author.
Resumo:
It was Dvorak in 1986 that postulated 'tumours are wounds that do not heal' as they share common cellular and molecular mechanisms, which are active in both wounds and in cancer tissue. Inflammation is a crucial part of the innate immune system that protects against pathogens and initiates adaptive immunity. Acute inflammation is usually a rapid and self-limiting process, however it does not always resolve. This leads to the establishment of a chronic inflammatory state and provides the perfect environment for carcinogenesis. Inflammation and cancer have long had an association, going back as far as Virchow in 1863, when leucocytes were noted in neoplastic tissue. It has been estimated that approximately 25% of all malignancies are initiated or exacerbated by inflammation caused by infectious agents. Furthermore, inflammation is linked to all of the six hallmarks of cancer (evasion of apoptosis, insensitivity to anti-growth signals, unlimited replicative potential, angiogenesis, increase in survival factors and invasion and metastasis). It is thought that inflammation may play a critical role in lung carcinogenesis given that individuals with inflammatory lung conditions have an increased risk of lung cancer development. Cigarette smoking can also induce inflammation in the lung and smokers are at a higher risk of developing lung cancer than non-smokers. However, exposure to a number of environmental agents such as radon, have also been demonstrated as a causative factor in this disease. This chapter will focus on inflammation as a contributory factor in non small cell lung cancer (NSCLC), concentrating primarily on the pathological involvement of the pro-inflammatory cytokines, TNF-α, IL-1β, and the CXC (ELR+) chemokine family. Targeting of inflammatory mediators will also be discussed as a therapeutic strategy in this disease. © 2013 by Nova Science Publishers, Inc. All rights reserved.
Resumo:
Failure to efficiently induce apoptosis contributes to cisplatin resistance in non-small-cell lung cancer (NSCLC). Although BCL-2-associated X protein (BAX) and BCL-2 antagonist killer (BAK) are critical regulators of the mitochondrial apoptosis pathway, their requirement has not been robustly established in relation to cisplatin. Here, we show that cisplatin can efficiently bypass mitochondrial apoptosis block caused by loss of BAX and BAK, via activation of the extrinsic death receptor pathway in some model cell lines. Apoptosis resistance following cisplatin can only be observed when both extrinsic and intrinsic pathways are blocked, consistent with redundancy between mitochondrial and death receptor pathways in cisplatin-induced apoptosis. In H460 NSCLC cells, caspase-8 cleavage was shown to be induced by cisplatin and is dependent on death receptor 4, death receptor 5, Fas-associated protein with death domain, acid sphingomyelinase and ceramide synthesis. In contrast, cisplatin-resistant cells fail to activate caspase-8 via this pathway despite conserving sensitivity to death ligand-driven activation. Accordingly, caspase-8 activation block acquired during cisplatin resistance, can be bypassed by death receptor agonism.
Resumo:
Senescence and genomic integrity are thought to be important barriers in the development of malignant lesions. Human fibroblasts undergo a limited number of cell divisions before entering an irreversible arrest, called senescence. Here we show that human mammary epithelial cells (HMECs) do not conform to this paradigm of senescence. In contrast to fibroblasts, HMECs exhibit an initial growth phase that is followed by a transient growth plateau (termed selection or M0; refs 3-5), from which proliferative cells emerge to undergo further population doublings (approximately 20-70), before entering a second growth plateau (previously termed senescence or M1; refs 4-6). We find that the first growth plateau exhibits characteristics of senescence but is not an insurmountable barrier to further growth. HMECs emerge from senescence, exhibit eroding telomeric sequences and ultimately enter telomere-based crisis to generate the types of chromosomal abnormalities seen in the earliest lesions of breast cancer. Growth past senescent barriers may be a pivotal event in the earliest steps of carcinogenesis, providing many genetic changes that predicate oncogenic evolution. The differences between epithelial cells and fibroblasts provide new insights into the mechanistic basis of neoplastic transformation.
Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence
Resumo:
The genomic changes that foster cancer can be either genetic or epigenetic in nature. Early studies focused on genetic changes and how mutational events contribute to changes in gene expression. These point mutations, deletions and amplifications are known to activate oncogenes and inactivate tumor suppressor genes. More recently, multiple epigenetic changes that can have a profound effect on carcinogenesis have been identified. These epigenetic events, such as the methylation of promoter sequences in genes, are under active investigation. In this review we will describe a methylation event that occurs during the propagation of human mammary epithelial cells (HMEC) in culture and detail the accompanying genetic alterations that have been observed.
Resumo:
The role of Bone Tissue Engineering in the field of Regenerative Medicine has been the topic of substantial research over the past two decades. Technological advances have improved orthopaedic implants and surgical techniques for bone reconstruction. However, improvements in surgical techniques to reconstruct bone have been limited by the paucity of autologous materials available and donor site morbidity. Recent advances in the development of biomaterials have provided attractive alternatives to bone grafting expanding the surgical options for restoring the form and function of injured bone. Specifically, novel bioactive (second generation) biomaterials have been developed that are characterised by controlled action and reaction to the host tissue environment, whilst exhibiting controlled chemical breakdown and resorption with an ultimate replacement by regenerating tissue. Future generations of biomaterials (third generation) are designed to be not only osteo- conductive but also osteoinductive, i.e. to stimulate regeneration of host tissues by combining tissue engineer- ing and in situ tissue regeneration methods with a focus on novel applications. These techniques will lead to novel possibilities for tissue regeneration and repair. At present, tissue engineered constructs that may find future use as bone grafts for complex skeletal defects, whether from post-traumatic, degenerative, neoplastic or congenital/developmental “origin” require osseous reconstruction to ensure structural and functional integrity. Engineering functional bone using combinations of cells, scaffolds and bioactive factors is a promising strategy and a particular feature for future development in the area of hybrid materials which are able to exhibit suitable biomimetic and mechanical properties. This review will discuss the state of the art in this field and what we can expect from future generations of bone regeneration concepts.
Resumo:
Although the Mr. 72,000 type IV collagenase (matrix metalloproteinase 2) has been implicated in a variety of normal and pathogenic processes, its activation mechanism in vivo is unclear. We have found that fibroblasts from normal and neoplastic human breast, as well as the sarcomatous human Hs578T and HT1080 cell lines, activate endogenous matrix metalloprotease 2 when cultured on type I collagen gels, but not on plastic, fibronectin, collagen IV, gelatin, matrigel, or basement membrane-like HR9 cell matrix. This activation is monitored by the zymographic detection of Mr 59,000 and/or Mr 62,000 species, requires 2-3 days of culture on vitrogen to manifest, is cycloheximide inhibitable, and correlates with an arborized morphology. A similar activation pattern was seen in these cells in response to Concanavalin A but not transforming growth factor β or 12-O-tetradecanoylphorbol-13-acetate. The interstitial matrix may thus play an important role in regulating matrix degradation in vivo.
Resumo:
Kaposi's sarcoma (KS) in general, and acquired immunodeficiency syndrome-related KS (AIDS-KS) in particular, is a highly invasive and intensely angiogenic neoplasm of unknown cellular origin. We have recently established AIDS-KS cells in long term culture and reported the development of KS-like lesions in nude mice inoculated with these cells. Here, we have examined the in vitro invasiveness of basement membrane by AIDS-KS cells, as well as the effect(s) of their supernatants on the migration and invasiveness of human vascular endothelial cells. AIDS-KS cells were highly invasive in the Boyden chamber invasion assay and formed invasive, branching colonies in a 3-dimensional gel (Matrigel). Normal endothelial cells form tube-like structures on Matrigel. AIDS-KS cell-conditioned media induced endothelial cells to form invasive clusters in addition to tubes. KS-cell-conditioned media, when placed in the lower compartment of the Boyden chamber, stimulated the migration of human and bovine vascular endothelial cells across filters coated with either small amounts of collagen IV (chemotaxis) or a Matrigel barrier (invasion). Basic fibroblast growth factor could also induce endothelial cell chemotaxis and invasion in these assays. However, when antibodies to basic fibroblast growth factor were used the invasive activity induced by the AIDS-KS-cell-conditioned media was only marginally inhibited, suggesting that the large quantities of basic fibroblast growth factor-like material released by the AIDS-KS cells are not the main mediators of this effect. Specific inhibitors of laminin and collagenase IV action, which represent critical determinants of basement membrane invasion, blocked the invasiveness of the AIDS-KS cell-activated endothelial cells in these assays. These data indicate that KS cells appear to be of smooth muscle origin but secrete a potent inducer of endothelial cell chemotaxis and invasiveness which could be responsible for angiogenesis and the resulting highly vascularized lesions. These assays appear to be a model to study the invasive spread and angiogenic capacity of human AIDS-related KS and should prove useful in the identification of molecular mediators and potential inhibitors of neoplastic neovascularization.