994 resultados para Neogene vulcanism
Resumo:
General global cooling over the Neogene has been modulated by changes in Earth's orbital parameters. Investigations of deep-sea sediment sequences show that various orbital cycles can dominate climate records for different latitudes or for different time intervals. However, a comprehensive understanding of astronomical imprints over the entire Neogene has been elusive because of the general absence of long, continuous records extending beyond the Pliocene. We present benthic foraminiferal d18O and d13C records over the past 23 Ma at Ocean Drilling Program Site 1148 in the northern South China Sea and construct an astronomically tuned timescale (TJ08) for these records based on natural gamma radiation and color reflectance data at this site. Our results show that a 41 ka cycle has dominated sediment records at this location over the Neogene, displaying a linear response to orbital forcing. A 100 ka cycle has also been significant. However, it is correlated nonlinearly with Earth's orbital variations at the 100 ka band. The sediment records also display a prominent 405 ka cycle. Although this cycle was coherent with orbital forcing during the Oligocene and the early Miocene, it was not coherent with Earth's orbital variations at the 405 ka band over the whole Neogene. Amplification of Northern Hemisphere and Southern Hemisphere glaciation since the middle Miocene may be responsible for this change in sedimentary response. Our benthic foraminifera d18O and d13C records further exhibit amplitude variations with longer periods of 600, 1000, 1200, and 2400 ka. Apparently, these cycles are nonlinear responses to insolation forcing.
Resumo:
Benthic foraminifers were studied quantitatively in 120 lower Miocene through upper Pleistocene samples from Ocean Drilling Program Site 747 (Central Kerguelen Plateau) and Sites 748 and 751 (Southern Kerguelen Plateau). These sites are situated on an 450-km-long, north-south transect between 54°49'S and 58°26'S at present water depths between 1696 and 1288 m. Principal component analysis on the census data of the most abundant 92 taxa helped to identify 8 benthic foraminifer assemblages. These benthic foraminifer assemblages were compared with Holocene faunas from southern high latitudes to reconstruct paleoenvironmental conditions. Middle lower Miocene sediments are characterized by a Uvigerina hispidocostata assemblage, indicating high paleoproductivity and/or not well-ventilated bottom water. From late early to late middle Miocene time, the Southern Kerguelen Plateau was bathed by a young, well-oxygenated, and carbonate-aggressive water mass, as indicated by a Nuttallides umbonifer-dominated benthic foraminifer assemblage. During late middle Miocene time, an Astrononion pusillum assemblage took over for only about 1 m.y., probably indicating the first injection of an aged water mass, similar to the North Atlantic Deep Water (NADW), into a developing circumpolar current system. Around the middle to late Miocene boundary, the fauna again became dominated by N. umbonifer. After the last appearance of N. umbonifer, reestablishment of the A. pusillum assemblage from the early late through at least the late late Miocene, indicated the established influence of a NADW-like water mass. The latest Miocene through middle late Pliocene benthic foraminifer assemblage was characterized by Epistominella exigua and strong carbonate dissolution, indicating very high biosiliceous production, and this in turn may indicate the formation and paleoposition of an Antarctic Polar Frontal Zone. From the late late Pliocene, a Trifarina angulosa assemblage (indicative today of sandy substrate and vigorous bottom currents) strongly dominated the fauna up to the late Pleistocene, when Bulimina aculeata (indicative today of calm sedimentation with high organic matter fluxes) became an important and partly dominating constituent of the fauna. This is interpreted as the faunal response to the decreased winnowing force (bottom current velocities) of the Antarctic Circumpolar Current during periods of global climatic amelioration and raised sea level.
(Table 8) Stratigraphic occurrences of selected diatom species from the Neogene of ODP Hole 113-695A
Resumo:
Quantitative study of benthic foraminifers from the upper Miocene to lower Pliocene section at Site 612 (1404 m present water depth) and the Pliocene section at Site 613 (2323 m present water depth) shows no evidence of widespread downslope transport of shallow-water biofacies or reworking of older material in the greater than 150 µm size fraction. In contrast, upper Miocene sediments from Site 604 (2364 m present water depth) show extensive reworking and downslope transport. At Site 612, benthic foraminifers show a succession from an upper Miocene Bolivina alata-Nonionella sp. biofacies, to an uppermost Miocene Bulimina alazanensis biofacies, to a lower Pliocene Cassidulina reflexa biofacies, to an upper Pliocene Melonis barleeanum-Islandiella laevigata biofacies. Evidence suggests that the Pliocene biofacies are in situ, although they could have been transported downslope from the upper-middle bathyal zone. At Site 613, Uvigerina peregrina dominated the "middle" Pliocene, while Globocassidulina subglobosa was dominant in the early and late Pliocene. High abundances of U. peregrina at Site 613 are associated with high values of sedimentary organic carbon.
Resumo:
Leg 101 of the Ocean Drilling Program recovered a large volume of Neogene sediments from sites in the Straits of Florida, Little Bahama Bank, and Exuma Sound. In varying amounts, shallow-water, platform-derived carbonate debris is nearly ubiquitous. Reworked planktonic foraminifers are common, especially in the Pliocene-Pleistocene. At Site 626 in the Straits of Florida, a sequence of Holocene to upper Oligocene sediments was recovered. The greatest Neogene hiatus at this site spans the latest Miocene through Pliocene. Below this, several minor hiatuses are present in a generally conformable sequence. From the Little Bahama Bank transect (Sites 627, 628, and 630), a nearly complete composite Neogene section was sampled. At Site 627, a major unconformity separates lowermost Miocene sediments from middle to upper Eocene sediments. A second major unconformity occurs at Site 628. Here, middle Miocene sediments lie above uppermost Oligocene deposits. Sites 632, 633, and 631 in Exuma Sound all bottomed in a thick, lower Pliocene section. The mid-Pliocene is very thin at Sites 633 and 631, while it is better represented at Site 632. Major unconformities at Sites 627 and 628 appear to correlate with periods of elevated sea level, which suggests that carbonate platform shedding may be greatest during this part of the sea-level cycles. One of the salient features of the Bahamas is the lack of any systematic temporal distribution of hiatuses. Only a brief hiatus in the late Pliocene may be regional. It appears that local platform-shedding events were of equal or greater importance in developing the stratigraphy of the Bahamas than regional or eustatic events.
Resumo:
Oxygen and carbon isotopic records of monogeneric and monospecific benthic and planktonic foraminifer samples from Sites 744 and 738 drilled on the southern end of the Kerguelen Plateau during ODP Leg 119 reveal the evolution of polar Indian Ocean water masses from the early Paleocene to the middle Miocene. Results from Site 738 are from sediments of early Paleocene to late Eocene age and those from Site 744 are late Eocene to middle Miocene. They suggest that intermediate waters at this location did not originate in the high latitudes during the early Eocene. Surface and near-surface waters cooled gradually after the maximum warming at 56 Ma, when surface waters were about 18°C. Intermediate waters cooled after 52 Ma. The highest temperatures (lowest d18O values) of the Cenozoic occurred from 56 to 52 Ma. The records of equatorial Pacific Site 577 and Weddell Sea Site 690 resemble that of the polar Indian Ocean in this interval. The well-documented d13C excursions toward positive values in the late Paleocene and negative values in the early Eocene are represented by foraminifers increases of 1.5 per mil and following decreases of about 3 per mil. Most of the cooling in the Paleogene occurred in the middle and late Eocene. A 2°C decrease of surface water at about 38.4 Ma heralded the beginning of extensive glacial conditions in Antarctica in the early Oligocene. At Site 744, the global d18O shift just above the Eocene/Oligocene boundary is 1.15 per mil, and occurred gradually in sediments dated at 36.5-35.9 Ma. Ice-rafted debris was deposited beginning at 36.1 Ma for about the next 2 m.y. This simultaneous occurrence of the global d18O shift with ice-rafted debris is evidence for early Oligocene glaciation in East Antarctica. Moreover, early and late Oligocene Cibicidoides d18O values between 2 and 2.2 per mil indicate intermediate water cooling and a small ice-volume effect. Production of cold dense bottom water in Antarctica was intensified with continental cooling and glaciation in the early Oligocene. Comparison of Oligocene and early Miocene isotopic data from high-latitude and low-latitude deepsea sites indicates that there were probably at least two sources of bottom waters at this time.
Resumo:
Über die Verbreitung, Gliederung und Ausbildung des Jungtertiärs im westlichen Schleswig-Holstein war bisher nicht viel bekannt. Am besten bearbeitet sind die glazial gestauchten Schollen von Morsum/Sylt. Eine Aufzählung erbohrter Miozänvorkommen mit nicht immer überzeugender Begründung lieferte H.-L. HECK 1935. S. THIELE (1941) hat die ihm bekannten Vorkommen hauptsächlich nach faziellen und petrographischen Gesichtspunkten bearbeitet. Er erkannte richtig die Stellung der Braunkohlensande. Die angekündigte palaeontologische Bearbeitung ist nicht erschienen. Eine allgemeine Übersicht über die Entwicklung des Jungtertiärs bringen W. WOLFE und H.-L. HECK 1949. W. HINSCH lieferte wertvolle Beiträge zur Molluskenfauna und zur Gliederung des Miozäns (1952, 1955). Über neue Vorkommen von Braunkohlen-Sanden berichtete E. DITTMER(1 956), eine erste Übersicht über neue Vorkommen der Hemmoorer Stufe gab derselbe Verfasser 1957.
Resumo:
Subcontinuously cored early(?)-middle Miocene to recently deposited sediments from ODP Site 645 were studied texturally, mineralogically, and geochemically. The entire sequence contains minerals and associated chemical elements that are chiefly of detrital origin. In particular, the clay minerals, which include smectite, kaolinite, chlorite, and illite, are detrital. No obvious evidence of diagenesis with depth, of burial, of volcanism, or of hydrothermal alteration was observed. The sedimentary textures, clay mineralogy, and <2-µm fraction geochemistry of the early middle Miocene sediments (630 to 1147 mbsf) suggest the pronounced but variable influence of a southward bottom current. Two clay facies are defined. The lower one, Cj (780 to 1147 mbsf), is characterized by the great abundance of discrete smectite (with less than 15% illite interlayers), probably detrital in origin, and reworked older, discrete, smectite-rich sediments. The upper clay facies, C2 (630 to 780 mbsf), shows a net decrease of the fully expandable clay abundances, with a great abundance of mixed-layer, illite-smectite clays (60 to 80% of illite interlayers). Such clay assemblages can be inherited from paleosoils or older sedimentary rocks. An important change occurs at 630 mbsf (clay fraction) or 600 mbsf (sedimentary texture), which may be explained by the beginning of continental glaciation (630 mbsf, ~9 Ma) and the onset of ice rafting in Baffin Bay (600 mbsf, ~8 Ma). Above this level, the characteristics and modifications of the clay assemblages are controlled climatically and can be explained by the fluctuations of (1) ice-rafting, (2) speed of weak bottom currents, and (3) some supply by mud turbiditic currents. Three clay facies (C3, C4, and C5) can be defined by the abrupt increases of the inherited chlorite and illite clays.
Resumo:
A preliminary composite depth section was generated for Site 704 by splicing Holes 704A and 704B together over the interval 0-350 mbsf (0-9 m.y.). High-resolution carbonate and opal data from the cores were correlated with the calcium and silicon signals from the GST logging run in Hole 704B to identify missing and disturbed intervals in the cores. Paleomagnetic and biostratigraphic age boundaries were then transferred to the composite depth records to obtain an age model, and sedimentation rates were calculated by linear interpolation between datums. Algorithms relating measured dry-bulk density to carbonate content and depth were generated to produce predicted values of density for every sample. Accumulation rates of bulk, carbonate, opal, and terrigenous sediment components were then computed to generate a record of sediment deposition on the Meteor Rise that has a resolution of better than 200,000 yr for the period from 8.6 to 1.0 m.y. From 8.6 to 2.5 m.y., bulk-accumulation rates on the Meteor Rise averaged less than 2 g/cm**2/1000 yr and were dominated by carbonate deposition. The first significant opal deposition (6.0 m.y.) punctuated a brief (less than 0.6 Ma) approach of the Polar Front Zone (PFZ) northward that heralded a period of increasing severity of periodic carbonate dissolution events (terrigenous maxima) that abruptly terminated at 4.8 m.y. (base of the Thvera Subchron), synchronous with the reflooding of the Mediterranean after the Messinian salinity crisis. From 4.8 to 2.5 m.y., carbonate again dominated deposition, and the PFZ was far south except during brief northward excursions bracketing 4.2-3.9, 3.3-2.9, and 2.8-2.7 m.y. At 2.5 m.y., all components of bulk-accumulation rates increased dramatically (up to 15 g/cm2/1000 yr), and by 2.4 m.y., a pattern of alternating, high-amplitude carbonate and opal cyclicity marked the initiation of rapid glacial to interglaci·l swings in the position of the PFZ, synchronous with the "onset" of major Northern Hemisphere glaciation. Both mass-accumulation rates and the amplitude of the cycles decreased by about 2 m.y., but opal accumulation rates remained high up through the base of the Jaramillo (0.98 m.y.). From 1.9 to 1 m.y., the record is characterized by moderate amplitude fluctuations in carbonate and opal. This record of opal accumulation rates is interpreted as a long-term "Polar Front Indicator" that monitors the advance and retreat of the opal-rich PFZ northward (southward) toward (away from) the Meteor Rise in the subantarctic sector of the South Atlantic Ocean. The timing of PFZ migrations in the subantarctic South Atlantic Ocean is remarkably similar to Pliocene-Pleistocene climate records deduced from benthic oxygen isotope records in the North Atlantic Ocean (Raymo et al., 1989, doi:10.1029/PA004i004p00413; Ruddiman et al., 1989, doi:10.1029/PA004i004p00353). These include northward migrations during "cold" intervals containing strong glacial isotope stages (2.4-2.3, 2.1-2.0, 1.95-1.55, 1.45-1.30 m.y. and at about 1.13 and 1.09 m.y.) and southward migrations during "warm" intervals containing weak glacial and/or strong interglacial stages (2.45-2.40, 2.30-2.10, 2.00-1.95, 1.52-1.45, 1.30-1.18, 1.11, and 1.06-0.93 m.y.). Although our preliminary composite record is not continuous (some stages are obviously missing), there is hope that future work will identify these missing intervals in the as yet incomplete Hole 704B and will extend this high-resolution Southern Hemisphere climate record back to 8.6 m.y.
Resumo:
Sites 1085, 1086 and 1087 were drilled off South Africa during Ocean Drilling Program (ODP) Leg 175 to investigate the Benguela Current System. While previous studies have focused on reconstructing the Neogene palaeoceanographic and palaeoclimatic history of these sites, palynology has been largely ignored, except for the Late Pliocene and Quaternary. This study presents palynological data from the upper Middle Miocene to lower Upper Pliocene sediments in Holes 1085A, 1086A and 1087C that provide complementary information about the history of the area. Abundant and diverse marine palynomorphs (mainly dinoflagellate cysts), rare spores and pollen, and dispersed organic matter have been recovered. Multivariate statistical analysis of dispersed organic matter identified three palynofacies assemblages (A, B, C) in the most continuous hole (1085A), and they were defined primarily by amorphous organic matter (AOM), and to a lesser extent black debris, structured phytoclasts, degraded phytoclasts, and marine palynomorphs. Ecostratigraphic interpretation based on dinoflagellate cyst, spore-pollen and palynofacies data allowed us to identify several palaeoceanographic and palaeoclimatic signals. First, the late Middle Miocene was subtropical, and sediments contained the highest percentages of land-derived organic matter, even though they are rich in AOM (palynofacies assemblage A). Second, the Late Miocene was cool-temperate and characterized by periods of intensified upwelling, increase in productivity, abundant and diverse oceanic dinoflagellate cysts, and the highest percentages of AOM (palynofacies assemblage C). Third, the Early to early Late Pliocene was warm-temperate with some dry intervals (increase in grass pollen) and intensified upwelling. Fourth, the Neogene "carbonate crash" identified in other southern oceans was recognized in two palynofacies A samples in Hole 1085A that are nearly barren of dinoflagellate cysts: one Middle Miocene sample (590 mbsf, 13.62 Ma) and one Upper Miocene sample (355 mbsf, 6.5 Ma). Finally, the extremely low percentages of pollen suggest sparse vegetation on the adjacent landmass, and Namib desert conditions were already in existence during the late Middle Miocene.