995 resultados para Nectar glands


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The silk glands of bees are a good model for the study of cell death in insects. With the objective to detect the nuclear features during glandular regression stage, larvae at the last instar and pre-pupae were collected and their silk glands were dissected and processed for ultrastructural analysis and histologically for cytochemical and imunocytochemical analysis. The results showed that the cellular nuclei exhibited characteristics of death by atypical apoptosis as well as autophagic cell death. Among the apoptosis characteristic were: nuclear strangulation with bleb formation in some nuclei, DNA fragmentation in most of the nuclei and nucleolar fragmentation. Centripetal chromatin compaction was observed in many nuclei, forming a perichromatin halo differing from typical apoptotic nuclei. With regards to the characteristics of autophagic-programmed cell death, most relevant was the delay in the collapse of many nuclei. (C) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Termites are eusocial insects that have a peculiar and intriguing system of communication using pheromones. The termite pheromones are composed of a blend of chemical substances and they coordinate different social interactions or activities, including foraging, building, mating, defense, and nestmate recognition. Some of these sociochemicals are volatile, spreading in the air, and others are contact pheromones, which are transmitted by trophallaxis and grooming. Among the termite semiochemicals, the most known are alarm, trail, sex pheromones, and hydrocarbons responsible for the recognition of nestmates. The sources of the pheromones are exocrine glands located all over the termite body. The principal exocrine structures considered pheromone-producing glands in Isoptera are the frontal, mandibular, salivary or labial, sternal, and tergal glands. The frontal gland is the source of alarm pheromone and defensive chemicals, but the mandibular secretions have been little studied and their function is not well established in Isoptera. The secretion of salivary glands involves numerous chemical compounds, some of them without pheromonal function. The worker saliva contains a phagostimulating pheromone and probably a building pheromone, while the salivary reservoir of some soldiers contains defensive chemicals. The sternal gland is the only source of trail-following pheromone, whereas sex pheromones are secreted by two glandular sources, the sternal and tergal glands. To date, the termite semiochemicals have indicated that few molecules are involved in their chemical communication, that is, the same compound may be secreted by different glands, different castes and species, and for different functions, depending on the concentration. In addition to the pheromonal parsimony, recent studies also indicate the occurrence of a synergic effect among the compounds involved in the chemical communication of Isoptera. (C) 2010 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biochemical studies revealed that the activity of some hydrolytic enzymes from the venom glands of honey bee Apis mellifera was higher in workers of 14 days of age than in those of 40 days. Among these enzymes, the highest activity was recorded for acid phosphatase, which was cytochemically detected throughout the length of the secretory filament and surrounding the canaliculi of the distal region of the reservoir. The acid phosphatase was considered to be a typical secretion product, since it was present in the cytoplasm as well as in the canaliculi of the secretory cells. (c) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many animals behave as robbers or thieves of floral resources, causing damage to floral tissues or consuming resources used to attract pollinators, or producing effects similar to emasculation by reducing the pollen load in the anthers (which generally results in losses in terms of sexual reproduction). The present work examined the direct and indirect impacts caused by nectar-robbing on the reproductive success of Sparattosperma leucanthum. Different manipulations of the flowers were tested to determine if fruit production was influenced by the perforations made in the floral tissues (direct damage), and if there were changes in visitation frequencies or in the behaviors of effective pollinators (indirect damage). Perforations made by nectar robbers did not lower the reproductive success of the plant species studied. The bee Trigona spinipes was the most frequent visitor and caused the largest perforations in the calyx and corolla of S. leucanthum. Additionally, we noted the occurrence of pollen theft by this same bee in flowers that had been protected against nectar-robbing. These results suggest that if S. leucanthum had developed a mechanism of resistance to robbery by T spinipes it would probably have experienced even lower pollination levels as a result of reductions in the quantities of pollen available for transfer by effective pollinators. We were not able to evaluate if nectar depletion through robbery modified the behavior of the effective pollinators (bumblebees of the genus Bombus).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanism of silk formation in Apis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th instar and finishes at the end of the same instar. This process begins in the distal secretory portion of the gland, going towards the proximal secretory portion; and from the periphery to the center of the gland lumen. The silk proteins are released from the secretory cells as a homogeneous substance that polymerizes in the lumen to form compact birefringent tactoids. Secondly, the water absorption from the lumen secretion, carried out by secretory and duct cells, promotes aggregation of the tactoids that form a spiral-shape filament with a zigzag pattern. This pattern is also the results of the silk compression in the gland lumen and represents a high concentration of macromolecularly well-oriented silk proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochemistry studies of the nuclei of the venom glands' cells of worker bees of Apis mellifera indicated that there is a higher activity in the young workers while there is a predominance of degenerative characteristics in the older workers. In addition, we demonstrated that there is an occurrence of differential nuclear synthetic activities between the cells of the distal and the proximal regions of the secretory filament and of the venom reservoir. Signs of a higher nuclear activity were evidenced at the distal regions of this gland in 14-day old workers, while at the more proximal regions of the venom gland of 40-day old workers we identified the most obvious signs of degeneration. Therefore, it was evident that the process of glandular degeneration begins at the distal region of the venom gland instead of beginning at the proximal region as had been established previously. In addition, characteristics of nuclear synthetic activities were noted in the cells of the proximal region of the reservoir; these cells were thought to be non-secretory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As compared to Apis mellifera where only workers have hypopharyngeal glands, in Scaptotrigona postica, these glands occur in workers, queens and males. They are composed of two long axial ducts with many unicellular secretory alveoli interconnected by secretory canaliculi. The axial ducts are longer in miles than in workers, but the alveolar areas of queens and males are generally smaller. In workers the alveoli have their greatest size in the nurses or middle-aged individuals while in queens and males they are larger in newly emerged individuals. The results indicate that the glands in workers may produce food for the brood as in A. mellifera, since they are well developed in the nurse workers. However, the function of the glands in queens and males remains to be clarified since these individuals have no part in brood care.