969 resultados para Natural language interface


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Information can be expressed in many ways according to the different capacities of humans to perceive it. Current systems deals with multimedia, multiformat and multiplatform systems but another « multi » is still pending to guarantee global access to information, that is, multilinguality. Different languages imply different replications of the systems according to the language in question. No solutions appear to represent the bridge between the human representation (natural language) and a system-oriented representation. The United Nations University defined in 1997 a language to be the support of effective multilinguism in Internet. In this paper, we describe this language and its possible applications beyond multilingual services as the possible future standard for different language independent applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

* This paper was made according to the program of fundamental scientific research of the Presidium of the Russian Academy of Sciences «Mathematical simulation and intellectual systems», the project "Theoretical foundation of the intellectual systems based on ontologies for intellectual support of scientific researches".

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Applied problems of functional homonymy resolution for Russian language are investigated in the work. The results obtained while using the method of functional homonymy resolution based on contextual rules are presented. Structural characteristics of minimal contextual rules for different types of functional homonymy are researched. Particular attention is paid to studying the control structure of the rules, which allows for the homonymy resolution accuracy not less than 95%. The contextual rules constructed have been realized in the system of technical text analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Linguistic theory, cognitive, information, and mathematical modeling are all useful while we attempt to achieve a better understanding of the Language Faculty (LF). This cross-disciplinary approach will eventually lead to the identification of the key principles applicable in the systems of Natural Language Processing. The present work concentrates on the syntax-semantics interface. We start from recursive definitions and application of optimization principles, and gradually develop a formal model of syntactic operations. The result – a Fibonacci- like syntactic tree – is in fact an argument-based variant of the natural language syntax. This representation (argument-centered model, ACM) is derived by a recursive calculus that generates a mode which connects arguments and expresses relations between them. The reiterative operation assigns primary role to entities as the key components of syntactic structure. We provide experimental evidence in support of the argument-based model. We also show that mental computation of syntax is influenced by the inter-conceptual relations between the images of entities in a semantic space.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated the model of the analysis of the text of the technical project is submitted, the attribute grammar of a technical specification, intended for formalization of limited Russian is constructed with the purpose of analysis of offers of text of a technical specification, style features of the technical project as class of documents are considered, recommendations on preparation of text of a technical specification for the automated processing are formulated. The computer-aided system of semantic text analysis of a technical specification is considered. This system consists of the following subsystems: preliminary text processing, the syntactic and semantic analysis and construction of software models, storage of documents and interface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The given work is devoted to development of the computer-aided system of semantic text analysis of a technical specification. The purpose of this work is to increase efficiency of software engineering based on automation of semantic text analysis of a technical specification. In work it is offered and investigated a technique of the text analysis of a technical specification is submitted, the expanded fuzzy attribute grammar of a technical specification, intended for formalization of limited Russian language is constructed with the purpose of analysis of offers of text of a technical specification, style features of the technical specification as class of documents are considered, recommendations on preparation of text of a technical specification for the automated processing are formulated. The computer-aided system of semantic text analysis of a technical specification is considered. This system consist of the following subsystems: preliminary text processing, the syntactic and semantic analysis and construction of software models, storage of documents and interface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This article briefly reviews multilingual language resources for Bulgarian, developed in the frame of some international projects: the first-ever annotated Bulgarian MTE digital lexical resources, Bulgarian-Polish corpus, Bulgarian-Slovak parallel and aligned corpus, and Bulgarian-Polish-Lithuanian corpus. These resources are valuable multilingual dataset for language engineering research and development for Bulgarian language. The multilingual corpora are large repositories of language data with an important role in preserving and supporting the world's cultural heritage, because the natural language is an outstanding part of the human cultural values and collective memory, and a bridge between cultures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The article briefly reviews bilingual Slovak-Bulgarian/Bulgarian-Slovak parallel and aligned corpus. The corpus is collected and developed as results of the collaboration in the frameworks of the joint research project between Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, and Ľ. Štúr Institute of Linguistics, Slovak Academy of Sciences. The multilingual corpora are large repositories of language data with an important role in preserving and supporting the world's cultural heritage, because the natural language is an outstanding part of the human cultural values and collective memory, and a bridge between cultures. This bilingual corpus will be widely applicable to the contrastive studies of the both Slavic languages, will also be useful resource for language engineering research and development, especially in machine translation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

One of the leading motivations behind the multilingual semantic web is to make resources accessible digitally in an online global multilingual context. Consequently, it is fundamental for knowledge bases to find a way to manage multilingualism and thus be equipped with those procedures for its conceptual modelling. In this context, the goal of this paper is to discuss how common-sense knowledge and cultural knowledge are modelled in a multilingual framework. More particularly, multilingualism and conceptual modelling are dealt with from the perspective of FunGramKB, a lexico-conceptual knowledge base for natural language understanding. This project argues for a clear division between the lexical and the conceptual dimensions of knowledge. Moreover, the conceptual layer is organized into three modules, which result from a strong commitment towards capturing semantic knowledge (Ontology), procedural knowledge (Cognicon) and episodic knowledge (Onomasticon). Cultural mismatches are discussed and formally represented at the three conceptual levels of FunGramKB.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current study is a post-hoc analysis of data from the original randomized control trial of the Play and Language for Autistic Youngsters (PLAY) Home Consultation program, a parent-mediated, DIR/Floortime based early intervention program for children with ASD (Solomon, Van Egeren, Mahone, Huber, & Zimmerman, 2014). We examined 22 children from the original RCT who received the PLAY program. Children were split into two groups (high and lower functioning) based on the ADOS module administered prior to intervention. Fifteen-minute parent-child video sessions were coded through the use of CHILDES transcription software. Child and maternal language, communicative behaviors, and communicative functions were assessed in the natural language samples both pre- and post-intervention. Results demonstrated significant improvements in both child and maternal behaviors following intervention. There was a significant increase in child verbal and non-verbal initiations and verbal responses in whole group analysis. Total number of utterances, word production, and grammatical complexity all significantly improved when viewed across the whole group of participants; however, lexical growth did not reach significance. Changes in child communicative function were especially noteworthy, and demonstrated a significant increase in social interaction and a significant decrease in non-interactive behaviors. Further, mothers demonstrated an increase in responsiveness to the child’s conversational bids, increased ability to follow the child’s lead, and a decrease in directiveness. When separated for analyses within groups, trends emerged for child and maternal variables, suggesting greater gains in use of communicative function in both high and low groups over changes in linguistic structure. Additional analysis also revealed a significant inverse relationship between maternal responsiveness and child non-interactive behaviors; as mothers became more responsive, children’s non-engagement was decreased. Such changes further suggest that changes in learned skills following PLAY parent training may result in improvements in child social interaction and language abilities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A interação homem-máquina tem evoluído significativamente nos últimos anos, a ponto de permitir desenvolver soluções adequadas para apoio a pessoas que possuem um certo tipo de limitação física ou cognitiva. O desenvolvimento de técnicas naturais e intuitivas de interação, as chamadas Natural User Interface (NUI), permitem, hoje, que pessoas que estejam acamadas e/ou com incapacidade motora possam executar um conjunto de ações por intermédio de gestos, aumentando assim a sua qualidade de vida. A solução implementada neste projecto é baseada em processamento de imagem e visão por computador através do sensor 3D Kinect e consiste numa interface natural para o desenvolvimento de uma aplicação que reconheça gestos efetuados por uma mão humana. Os gestos identificados pela aplicação acionam um conjunto de ações adequados a uma pessoa acamada, como, por exemplo, acionar a emergência, ligar ou desligar a TV ou controlar a inclinação da cama. O processo de desenvolvimento deste projeto implicou várias etapas. Inicialmente houve um trabalho intenso de investigação sobre as técnicas e tecnologias consideradas importantes para a realização do trabalho - a etapa de investigação, a qual acompanhou praticamente todo o processo. A segunda etapa consistiu na configuração do sistema ao nível do hardware e do software. Após a configuração do sistema, obtiveram-se os primeiros dados do sensor 3D Kinect, os quais foram convertidos num formato mais apropriado ao seu posterior tratamento. A segmentação da mão permitiu posteriormente o reconhecimento de gestos através da técnica de matching para os seis gestos implementados. Os resultados obtidos são satisfatórios, tendo-se contabilizado cerca de 96% de resultados válidos. A área da saúde e bem-estar tem necessidade de aplicações que melhorem a qualidade de vida de pessoas acamadas, nesse sentido, o protótipo desenvolvido faz todo o sentido na sociedade actual, onde se verifica o envelhecimento da população.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O processamento de linguagem natural e as ontologias são ferramentas cuja interação permite uma melhor compreensão dos dados armazenados. Este trabalho, ao associar estas duas áreas aos elementos disponíveis numa base de dados prosopográfica, tornou possível identificar e classificar relacionamentos entre setores de ocupação na forma como eram designados na época, setores de atividade num formato mais próximo do de hoje e o estatuto social que essas incumbências tinham na sociedade coeva. Os dados utilizados são sobretudo de membros do Santo Ofício – do século XVI ao século XVIII. Para atingir este objetivo utilizaram-se algumas descrições textuais de ocorrências da época e outras pouco estruturadas, disponíveis no repositório SPARES. A aplicação de processamento de linguagem natural (remoção de stopwords e aplicação de stemming), conjugada com a construção de duas ontologias, tornou possível classificar esses dados, permitindo consultas mais eficazes. Ao contribuir para a classificação automática de dados históricos, propõem-se metodologias que podem ser aplicadas em dados de qualquer outra área do conhecimento, especialmente as que lidam com as variáveis de tempo e espaço de forma mais intensa; Abstract: OntoSPARES: from natural language to ontologies Contributions to the automatic classification of historical data (16th-18th centuries) The interaction between the natural language processing and ontologies are tools allowing a better understanding of the data stored. This work, by combining these two areas to the elements available in a prosopographic database, has made possible to identify and classify relationships between occupations of many individuals (in general Holy Office members of the 16th-18th centuries). To achieve this goal the data used was gathered in SPARES repository, including some textual descriptions of the time occurrences. They are all few structured. The application of natural language processing (stopwords removal and stemming application), combined with the construction of two ontologies, made possible to classify those data, allowing a more effective search. By contributing to the automatic classification of historical data, this thesis proposes methodologies that can be applied to data from any other field of knowledge, specially data dealing with time and space variables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nonostante lo scetticismo di molti studiosi circa la possibilità di prevedere l'andamento della borsa valori, esistono svariate teorie ipotizzanti la possibilità di utilizzare le informazioni conosciute per predirne i movimenti futuri. L’avvento dell’intelligenza artificiale nella seconda parte dello scorso secolo ha permesso di ottenere risultati rivoluzionari in svariati ambiti, tanto che oggi tale disciplina trova ampio impiego nella nostra vita quotidiana in molteplici forme. In particolare, grazie al machine learning, è stato possibile sviluppare sistemi intelligenti che apprendono grazie ai dati, riuscendo a modellare problemi complessi. Visto il successo di questi sistemi, essi sono stati applicati anche all’arduo compito di predire la borsa valori, dapprima utilizzando i dati storici finanziari della borsa come fonte di conoscenza, e poi, con la messa a punto di tecniche di elaborazione del linguaggio naturale umano (NLP), anche utilizzando dati in linguaggio naturale, come il testo di notizie finanziarie o l’opinione degli investitori. Questo elaborato ha l’obiettivo di fornire una panoramica sull’utilizzo delle tecniche di machine learning nel campo della predizione del mercato azionario, partendo dalle tecniche più elementari per arrivare ai complessi modelli neurali che oggi rappresentano lo stato dell’arte. Vengono inoltre formalizzati il funzionamento e le tecniche che si utilizzano per addestrare e valutare i modelli di machine learning, per poi effettuare un esperimento in cui a partire da dati finanziari e soprattutto testuali si tenterà di predire correttamente la variazione del valore dell’indice di borsa S&P 500 utilizzando un language model basato su una rete neurale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Natural Language Processing (NLP) has seen tremendous improvements over the last few years. Transformer architectures achieved impressive results in almost any NLP task, such as Text Classification, Machine Translation, and Language Generation. As time went by, transformers continued to improve thanks to larger corpora and bigger networks, reaching hundreds of billions of parameters. Training and deploying such large models has become prohibitively expensive, such that only big high tech companies can afford to train those models. Therefore, a lot of research has been dedicated to reducing a model’s size. In this thesis, we investigate the effects of Vocabulary Transfer and Knowledge Distillation for compressing large Language Models. The goal is to combine these two methodologies to further compress models without significant loss of performance. In particular, we designed different combination strategies and conducted a series of experiments on different vertical domains (medical, legal, news) and downstream tasks (Text Classification and Named Entity Recognition). Four different methods involving Vocabulary Transfer (VIPI) with and without a Masked Language Modelling (MLM) step and with and without Knowledge Distillation are compared against a baseline that assigns random vectors to new elements of the vocabulary. Results indicate that VIPI effectively transfers information of the original vocabulary and that MLM is beneficial. It is also noted that both vocabulary transfer and knowledge distillation are orthogonal to one another and may be applied jointly. The application of knowledge distillation first before subsequently applying vocabulary transfer is recommended. Finally, model performance due to vocabulary transfer does not always show a consistent trend as the vocabulary size is reduced. Hence, the choice of vocabulary size should be empirically selected by evaluation on the downstream task similar to hyperparameter tuning.