824 resultados para National Economic Impact.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The best description of water resources for Grand Turk was offered by Pérez Monteagudo (2000) who suggested that rain water was insufficient to ensure a regular water supply although water catchment was being practised and water catchment possibilities had been analysed. Limestone islands, mostly flat and low lying, have few possibilities for large scale surface storage, and groundwater lenses exist in very delicate equilibrium with saline seawater, and are highly likely to collapse due to sea level rise, improper extraction, drought, tidal waves or other extreme event. A study on the impact of climate change on water resources in the Turks and Caicos Islands is a challenging task, due to the fact that the territory of the Islands covers different environmental resources and conditions, and accurate data are lacking. The present report is based on collected data wherever possible, including grey data from several sources such as the Intergovernmental Panel on Climate Change (IPCC) and Cuban meteorological service data sets. Other data were also used, including the author’s own estimates and modelling results. Although challenging, this was perhaps the best approach towards analysing the situation. Furthermore, IPCC A2 and B2 scenarios were used in the present study in an effort to reduce uncertainty. The main conclusion from the scenario approach is that the trend observed in precipitation during the period 1961 - 1990 is decreasing. Similar behaviour was observed in the Caribbean region. This trend is associated with meteorological causes, particularly with the influence of the North Atlantic Anticyclone. The annual decrease in precipitation is estimated to be between 30-40% with uncertain impacts on marine resources. After an assessment of fresh water resources in Turks and Caicos Islands, the next step was to estimate residential water demand based on a high fertility rate scenario for the Islands (one selected from four scenarios and compared to countries having similar characteristics). The selected scenario presents higher projections on consumption growth, enabling better preparation for growing water demand. Water demand by tourists (stopover and excursionists, mainly cruise passengers) was also obtained, based on international daily consumption estimates. Tourism demand forecasts for Turks and Caicos Islands encompass the forty years between 2011 and 2050 and were obtained by means of an Artificial Neural Networks approach. for the A2 and B2 scenarios, resulting in the relation BAU>B2>A2 in terms of tourist arrivals and water demand levels from tourism. Adaptation options and policies were analysed. Resolving the issue of the best technology to be used for Turks and Caicos Islands is not directly related to climate change. Total estimated water storage capacity is about 1, 270, 800 m3/ year with 80% capacity load for three plants. However, almost 11 desalination plants have been detected on Turks and Caicos Islands. Without more data, it is not possible to estimate long term investment to match possible water demand and more complex adaptation options. One climate change adaptation option would be the construction of elevated (30 metres or higher) storm resistant water reservoirs. The unit cost of the storage capacity is the sum of capital costs and operational and maintenance costs. Electricity costs to pump water are optional as water should, and could, be stored for several months. The costs arising for water storage are in the range of US$ 0.22 cents/m3 without electricity costs. Pérez Monteagudo (2000) estimated water prices at around US$ 2.64/m3 in stand points, US$ 7.92 /m3 for government offices, and US$ 13.2 /m3for cistern truck vehicles. These data need to be updated. As Turks and Caicos Islands continues to depend on tourism and Reverse Osmosis (RO) for obtaining fresh water, an unavoidable condition to maintaining and increasing gross domestic product(GDP) and population welfare, dependence on fossil fuels and vulnerability to increasingly volatile prices will constitute an important restriction. In this sense, mitigation supposes a synergy with adaptation. Energy demand and emissions of carbon dioxide (CO2) were also estimated using an emissions factor of 2. 6 tCO2/ tonne of oil equivalent (toe). Assuming a population of 33,000 inhabitants, primary energy demand was estimated for Turks and Caicos Islands at 110,000 toe with electricity demand of around 110 GWh. The business as usual (BAU), as well as the mitigation scenarios were estimated. The BAU scenario suggests that energy use should be supported by imported fossil fuels with important improvements in energy efficiency. The mitigation scenario explores the use of photovoltaic and concentrating solar power, and wind energy. As this is a preliminary study, the local potential and locations need to be identified to provide more relevant estimates. Macroeconomic assumptions are the same for both scenarios. By 2050, Turks and Caicos Islands could demand 60 m toe less than for the BAU scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study assesses the potential economic impact of climate change on coastal human settlements in the Caribbean, with specific reference to Barbados, and evaluates the costs and benefits of undertaking various adaptation strategies. The aim is to assist Caribbean territories in developing the strategies and capacity needed to deal with the potential impact of severe weather events that are anticipated to occur with increased frequency and intensity as a result of climate change. Some of the key anticipated manifestations of climate change for the Caribbean include elevated air and sea-surface temperatures, sea-level rise, possible changes in extreme events and a reduction in freshwater resources.This research focuses on how human settlements distributed along the coast of Guyana, especially those in low elevation coastal zones (LECZ)are affected by these impacts. Focusing on three potential transmission sources - sea-level rise, stronger storm hazards and increased precipitation – the study considers the vulnerability of populations in the LECZ areas and estimates the overall threat posed by climate change to coastal populations and infrastructure. Vulnerability to climate change (measured as exposed assets) was estimated for four emission scenarios as outlined by the Special Report on Emissions Scenarios (SRES), namely the A1, A2, B1 and B2 scenarios for the period 2010 to 2100 and as detailed by the Intergovernmental Panel on Climate Change (IPCC), using global circulation models (GCM) and storm surge hazard maps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The agricultural sector‟s contribution to GDP and to exports in Jamaica has been declining with the post-war development process that has led to the differentiation of the economy. In 2010, the sector contributed 5.8% of GDP, and 3% to the exports (of goods), but with 36% of employment, it continues to be a major employer. With a little less than half of the population living in rural communities, agricultural activities, and their linkages with other economic activities, continue to play an important role as a source of livelihoods, and by extension, the economic development of the country. Sugar cane cultivation has, with the exception of a couple of decades in the twentieth century when it was superseded by bananas, dominated the agricultural export sector for centuries as the source of the raw materials for the manufacture of sugar for export. In 2005, sugar cane itself accounted for 6.4% of the sector‟s contribution to GDP, and 52% of the contribution of agricultural exports to GDP. Production for the domestic market has long been the larger subsector, organized around the production of root crops, especially yams, vegetables and condiments. To analyse the potential impact of climate change on the agricultural sector, this study selected three important crops for detailed examination. In particular, the study selected sugar cane because of its overwhelming importance to the export subsector of agriculture, and yam and escallion for both their contribution to the domestic subsector as well as the preeminent role yams and escallion play in the economic activities of the communities in the hills of central Jamaica, and the plains of the southwest respectively. As with other studies in this project, the methodology adopted was to compare the estimated values of output on the SRES A2 and B2 Scenarios with the value of output on a “baseline” Business As Usual (BAU), and then estimate the net benefits of investment in the relevant to climate change for the selected crops. The A2 and B2 Scenarios were constructed by applying forecasts of changes in temperature and precipitation generated by INSMET from ECHAM inspired climate models. The BAU “baseline” was a linear projection of the historical trends of yields for each crop. Linear models of yields were estimated for each crop with particular attention to the influence of the two climate variables – temperature and precipitation. These models were then used to forecast yields up to 2050 (table1). These yields were then used to estimate the value of output of the selected crop, as well as the contribution to overall GDP, on each Scenario. The analysis suggested replanting sugar cane with heat resistant varieties, rehabilitating irrigation systems where they existed, and establishing technologically appropriate irrigation systems where they were not for the three selected crops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is anticipated to have potentially disastrous impacts on the economic viability of the agricultural sector, insomuch as traditional agricultural practices render the agricultural sector climate-dependent. Increased temperatures and increased intensity, timing and occurrence of hydro events are expected to challenge plant and animal viability. Under such circumstances, vector control is expected to become more difficult, which may further prejudice the prosperity of plant, livestock and fisheries growth. The impact is expected to be on the quality of agricultural produce and thereby, indirectly, on human health outcomes. The key threat mechanisms are debilitated plant vitality and increased propagation of pests, as drought periods increase the breeding of vectors through water pooling and soil erosion associated with the increased intensity of hydro events. In addition, climate change is likely to affect crop productivity in specific geographical areas through its impact on growing seasons and crop patterns, to the extent that crop varieties cannot adapt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The economic impact of climate change on root crop, fisheries and vegetable production for Trinidad and Tobago under the A2 and B2 scenarios were modeled, relative to a baseline ―no climate change‖ case, where the mean temperature and rainfall for a base period of 1980 – 2000 was assumed for the years up to 2050. Production functions were used, using ARMA specifications to correct for serial autocorrelation. For the A2 scenarios, rainfall is expected to fall by approximately 10% relative to the baseline case in the 2020s, but is expected to rise thereafter, until by the 2040s rainfall rises slightly above the mean for the baseline case. For the B2 scenario, rainfall rose slightly above the mean for the baseline case in the current decade, but falls steadily thereafter to approximately 15% by the 2040s. Over the same period, temperature is expected to increase by 1.34C and 1.37C under A2 and B2 respectively. It is expected that any further increase in rainfall should have a deleterious effect on root crop production as a whole, since the above mentioned crops represent the majority of the root crops included in the study. Further expected increases in temperature will result in the ambient temperature being very close to the optimal end of the range for most of these crops. By 2050, the value of yield cumulative losses (2008$) for root crops is expected to be approximately 248.8 million USD under the A2 scenario and approximately 239.4 million USD under the B2 scenario. Relative to the 2005 catch for fish, there will be a decrease in catch potential of 10 - 20% by 2050 relative to 2005 catch potentials, other things remaining constant. By 2050 under the A2 and B2 scenarios, losses in real terms were estimated to be 160.2 million USD and 80.1 million USD respectively, at a 1% discount rate. For vegetables, the mean rainfall exceeds the optimal rainfall range for sweet peppers, hot peppers and melongene. However, while the optimal rainfall level for tomatoes is 3000mm/yr, other vegetables such as sweet peppers, hot peppers and ochroes have very low rainfall requirements (as low as 300 mm/yr). Therefore it is expected that any further decrease in rainfall should have a mixed effect on individual vegetable production. It is expected that any further increase in temperature should have a mixed effect on individual vegetable production, though model results indicated that as a group, an increase in temperature should have a positive impact on vegetable production. By 2050, the value of yield cumulative gains (2008$) for vegetables is expected to be approximately 54.9 million USD under the A2 scenario and approximately 49.1 million USD under the B2 scenario, given a 1% discount rate. For root crops, fisheries and vegetables combined, the cumulative loss under A2 is calculated as approximately 352.8 million USD and approximately 270.8 million USD under B2 by 2050. This is equivalent to 1.37% and 1.05% of the 2008 GDP under the A2 and B2 scenarios respectively by 2050. Sea Level Rise (SLR) by 2050 is estimated to be 0.255 m under A2 and 0.215 m under B2. GIS estimation indicated that for a 0.255 m sea level rise, combined with a 0.5 m high tide, there would be no permanent inundation of agricultural land in Trinidad. The total inundation area is 1.18 km2. This occurs only in the Caroni Watershed, on the western coast of Trinidad, and the areas are outside the Caroni Swamp. Even with an additional rise of 0.5 m to simulate a high rainfall event, the estimated inundated area is 4.67 km2, but with no permanent inundation, though likely to be subject to flooding. Based on eleven (11) evaluation criteria, the top potential adaptation options were identified: 1. Use of water saving irrigation systems and water management systems e.g. drip irrigation; 2. Mainstream climate change issues into agricultural management; 3. Repair/maintain existing dams; 4. Alter crop calendar for short-term crops; 5. Adopt improved technologies for soil conservation; 6. Establish systems of food storage; 7. Promote water conservation – install on-farm water harvesting off roof tops; 8. Design and implement holistic water management plans for all competing uses; 9. Build on- farm water storage (ponds and tanks); 10. Agricultural drainage; and 11. Installation of greenhouses. The most attractive adaptation options, based on the Benefit-Cost Ratio are: (1) Build on- farm water storage such as ponds and tanks (2) Mainstreaming climate change issues into agricultural management and (3) Water Harvesting. However, the options with the highest net benefits are, (in order of priority): (1) Build on- farm water storage such as ponds and tanks, (2) Mainstreaming climate change issues into agricultural management and (3) Use of drip irrigation. Based on the area burnt in Trinidad and Tobago between 2005 and 2009, the average annual loss due to fires is 1717.3 ha. At US$17.41 per carbon credit, this implies that for the total land lost to forest fires on average each year, the opportunity cost of carbon credit revenue is 74.3 million USD. If a teak reforestation programme is undertaken in Trinidad and Tobago, the net benefit of reforestation under a carbon credit programme would be 69 million USD cumulatively to 2050.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research paper assesses the likely economic impact of climate change on the health sector in Trinidad and Tobago. The analysis, however, was limited to the economic impact of only a few climate-related diseases1 for which data were available. The approach utilized in this paper makes for easy extrapolation once the data on the other climate-related illnesses become available so that a full impact assessment can be carried out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is a naturally occurring phenomenon in which the earth‘s climate goes through cycles of warming and cooling; these changes usually take place incrementally over millennia. Over the past century, there has been an anomalous increase in global temperature, giving rise to accelerated climate change. It is widely accepted that greenhouse gas emissions from human activities such as industries have contributed significantly to the increase in global temperatures. The existence and survival of all living organisms is predicated on the ability of the environment in which they live not only to provide conditions for their basic needs but also conditions suitable for growth and reproduction. Unabated climate change threatens the existence of biophysical and ecological systems on a planetary scale. The present study aims to examine the economic impact of climate change on health in Jamaica over the period 2011-2050. To this end, three disease conditions with known climate sensitivity and importance to Jamaican public health were modelled. These were: dengue fever, leptospirosis and gastroenteritis in children under age 5. Historical prevalence data on these diseases were obtained from the Ministry of Health Jamaica, the Caribbean Epidemiology Centre, the Climate Studies Group Mona, University of the West Indies Mona campus, and the Meteorological Service of Jamaica. Data obtained spanned a twelve-year period of 1995-2007. Monthly data were obtained for dengue and gastroenteritis, while for leptospirosis, the annual number of cases for 1995-2005 was utilized. The two SRES emission scenarios chosen were A2 and B2 using the European Centre Hamburg Model (ECHAM) global climate model to predict climate variables for these scenarios. A business as usual (BAU) scenario was developed using historical disease data for the period 2000-2009 (dengue fever and gastroenteritis) and 1995-2005 (leptospirosis) as the reference decades for the respective diseases. The BAU scenario examined the occurrence of the diseases in the absence of climate change. It assumed that the disease trend would remain unchanged over the projected period and the number of cases of disease for each decade would be the same as the reference decade. The model used in the present study utilized predictive empirical statistical modelling to extrapolate the climate/disease relationship in time, to estimate the number of climate change-related cases under future climate change scenarios. The study used a Poisson regression model that considered seasonality and lag effects to determine the best-fit model in relation to the diseases under consideration. Zhang and others (2008), in their review of climate change and the transmission of vector-borne diseases, found that: ―Besides climatic variables, few of them have included other factors that can affect the transmission of vector-borne disease….‖ (Zhang 2008) Water, sanitation and health expenditure are key determinants of health. In the draft of the second communication to IPCC, Jamaica noted the vulnerability of public health to climate change, including sanitation and access to water (MSJ/UNDP, 2009). Sanitation, which in its broadest context includes the removal of waste (excreta, solid, or other hazardous waste), is a predictor of vector-borne diseases (e.g. dengue fever), diarrhoeal diseases (such as gastroenteritis) and zoonoses (such as leptospirosis). In conceptualizing the model, an attempt was made to include non-climate predictors of these climate-sensitive diseases. The importance of sanitation and water access to the control of dengue, gastroenteritis and leptospirosis were included in the Poisson regression model. The Poisson regression model obtained was then used to predict the number of disease cases into the future (2011-2050) for each emission scenario. After projecting the number of cases, the cost associated with each scenario was calculated using four cost components. 1. Treatment cost morbidity estimate. The treatment cost for the number of cases was calculated using reference values found in the literature for each condition. The figures were derived from studies of the cost of treatment and represent ambulatory and non-fatal hospitalized care for dengue fever and gastroenteritis. Due to the paucity of published literature on the health care cost associated with leptospirosis, only the cost of diagnosis and antibiotic therapy were included in the calculation. 2. Mortality estimates. Mortality estimates are recorded as case fatality rates. Where local data were available, these were utilized. Where these were unavailable, appropriate reference values from the literature were used. 3. Productivity loss. Productivity loss was calculated using a human capital approach, by multiplying the expected number of productive days lost by the caregiver and/or the infected person, by GDP per capita per day (US$ 14) at 2008 GDP using 2008 US$ exchange rates. 4. No-option cost. The no-option cost refers to adaptation strategies for the control of dengue fever which are ongoing and already a part of the core functions of the Vector Control Division of the Ministry of Health, Jamaica. An estimated US$ 2.1 million is utilized each year in conducting activities to prevent the post-hurricane spread of vector borne diseases and diarrhoea. The cost includes public education, fogging, laboratory support, larvicidal activities and surveillance. This no-option cost was converted to per capita estimates, using population estimates for Jamaica up to 2050 obtained from the Statistical Institute of Jamaica (STATIN, 2006) and the assumption of one expected major hurricane per decade. During the decade 2000-2009, Jamaica had an average inflation of 10.4% (CIA Fact book, last updated May 2011). This average decadal inflation rate was applied to the no-option cost, which was inflated by 10% for each successive decade to adjust for changes in inflation over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bahamas is at great risk and vulnerability given its geographical features as a low-lying, sea encircled country. If projected sea level rise is reached by 2050, between 10-12% of territory will be lost, especially in coastal zones where the main tourism assets are located. Vulnerability could also be manifested if flight carbon emission taxes are established in the main source markets, representing an economic threat to the tourism sector for the islands. The impact of climate change on main tourism demand variables will cause some losses to the country‟s income and government revenues. This would be acting conjointly with some local threats to tourism assets and trends in future global tourism demand. The second and no less important threat is tropical cyclones, which may be associated with raising sea level. Estimations posited the amount of losses in excess of 2400 million US$ for the four decades under examination. It is to be pointed out that there is still a lack of comparatively accurate data collection and analysis on this subject, a point deserving more attention in order to deepen the understanding of, and to extract better lessons from these extreme events. In the same period, total estimated impacts of progressive climate change are between 17 and 19 billions of B$ with estimated discount rates applied. The Bahamas is a Small Island Developing State with low growth on GHG emissions (second in Latin America), as well as a relative short capacity to lower emissions in the future. The country has a relative delay in the application of renewable energy systems, a solution that, provided documented studies on-site, might turn out to be fundamental in the country‟s efforts to establish mitigation related policies. The Bahamas currently has institutions and organizations that deal with climate change-related issues and an important number of measures and courses of action have been set up by the government. Nevertheless, more coordination among them is needed and should include international institutions. This coordination is essential even for the first steps, i.e. to conduct studies with a bottom-up approach in order to draw more accurate programs on adaptation and mitigation. It is fundamental for tourism to keep track of potential losses in tourist attractions (and to act accordingly), related to correspondent losses in biodiversity, water resources and coastal erosion. Also, actions to fight climate change impacts might improve the islands security standards, quality of living and protect cultural and heritage assets. These elements may definitely shape the future of the country‟s competitiveness as a tourism destination. It is possible and necessary to decide about the options with good cost-benefit ratio and reasonable payback periods, notwithstanding that cost-benefit analysis requires more refined and accurate data to provide precise and locally adapted options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is a continuous process that began centuries ago. Today the pace of change has increased with greater rapidity because of global warming induced by anthropogenically generated greenhouse gases (GHG). Failure to effectively deal with the adverse outcomes can easily disrupt plans for sustainable economic development. Because of the failure of export agriculture over the last several decades, to provide the economic stimuli needed to promote economic growth and development, Jamaica, like many other island states in the Caribbean subregion, has come to rely on tourism as an instrument of transformation of the macro-economy. It is believed this shift in economic imperative would eventually provide the economic impetus needed to generate much needed growth and development. This assessment has shown that tourism is not only a leading earner of foreign exchange in Jamaica and a major creator of both direct and indirect jobs but, also, one of the principal contributors to the country‟s Gross Domestic Product (GDP). The rapid expansion of the industry which occurred over the last several decades coupled with disregard for sound environmental practices has led to the destruction of coral reefs and the silting of wetlands. Because most of the industry is located along the coastal region it is extremely vulnerable to the adverse effects of climate change. Failure to address the predictable environmental challenges of climate change, with some degree of immediacy, will not only undermine, but quickly and seriously impair the capacity of industry to stimulate and contribute to the process of economic development. To this end, it important that further development of industry be characterised by sound economic and social planning and proper environmental practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to their high vulnerability and low adaptive capacity, Caribbean islands have legitimate concerns about their future, based on observational records, experience with current patterns and consequences of climate variability, and climate model projections. Although emitting less than 1% of global greenhouse gases, islands from the region have already perceived a need to reallocate scarce resources away from economic development and poverty alleviation, and towards the implementation of strategies to adapt to the growing threats posed by global warming (Nurse and Moore, 2005). The objectives of this Report are to conduct economic analyses of the projected impacts of climate change to 2050, within the context of the IPCC A2 and B2 scenarios, on the coastal and marine resources of St. Kitts and Nevis (SKN). The Report presents a valuation of coastal and marine services; quantitative and qualitative estimates of climate change impacts on the coastal zone; and recommendations for possible adaptation strategies and costs and benefits of adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report provides an analysis and evaluation of the likely effects of climate change on the tourism sector in Saint Lucia. Clayton (2009) identifies three reasons why the Caribbean should be concerned about the potential effects of climate change on tourism: (a) the relatively high dependence on tourism as a source of foreign exchange and employment; (b) the intrinsic vulnerability of small islands and their infrastructure (e.g. hotels and resorts) to sea level rise and extreme climatic events (e.g. hurricanes and floods); and, (c) the high dependence of the regional tourist industry on carbon-based fuels (both to bring tourist to the region as well as to provide support services in the region). The effects of climate change are already being felt on the island. Between 1970 and 2009 there was a rise in the number of relatively hot days experienced on the island. Added to this, there was also a decline in mean precipitation over the period. In addition to temperature, there is also the threat of increased wind speeds. Since the early twentieth century, the number of hurricanes passing through the Caribbean has risen from about 5-6 per year to more than 25 in some years of the twenty-first century. In Saint Lucia, the estimated damage from 12 windstorms (including hurricanes) affecting the island was US$1 billion or about 106% of 2009 GDP. Climate change is also likely to significantly affect coral reefs. Hoegh-Guldberg (2007) estimates that should current concentrations of carbon dioxide in the Earth’s atmosphere rise from 380ppm to 560ppm, decreases in coral calcification and growth by 40% are likely. This report attempted to quantify the likely effects of the changes in the climatic factors mentioned above on the economy of Saint Lucia. As it relates to temperature and other climatic variables, a tourism climatic index that captures the elements of climate that impact on a destination’s experience was constructed. The index was calculated using historical observations, as well as those under two, likely, Special Report on Emissions Scenarios (SRES) climate scenarios: A2 and B2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, an attempt is made to assess the economic impact of climate change on Aruba. This study has three main objectives. The first is to examine the factors that influence the demand and supply of tourism in Aruba. The second is to forecast the cost of climate change to the tourism sector until 2050 under the A2 and B2 climate scenarios with the Business as Usual (BAU) as a comparator climate scenario, and the third is to estimate the cost of adaptation and mitigation strategies that can be undertaken by Aruba to address climate change in the tourism sector.