975 resultados para Nanotube


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to their distinct properties, carbon nanotubes (CNTs) have emerged as promising candidate for field emission devices. It has been found experimentally that the results related to the field emission performance show variability. The design of an efficient field emitting device requires the analysis of the variabilities with a systematic and multiphysics based modeling approach. In this paper, we develop a model of randomly oriented CNTs in a thin film by coupling the field emission phenomena, the electron-phonon transport and the mechanics of single isolated CNT. A computational scheme is developed by which the states of CNTs are updated in time incremental manner. The device current is calculated by using Fowler-Nordheim equation for field emission to study the performance at the device scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arrays of aligned carbon nanotubes (CNTs) have been proposed for different applications, including electrochemical energy storage and shock-absorbing materials. Understanding their mechanical response, in relation to their structural characteristics, is important for tailoring the synthesis method to the different operational conditions of the material. In this paper, we grow vertically aligned CNT arrays using a thermal chemical vapor deposition system, and we study the effects of precursor flow on the structural and mechanical properties of the CNT arrays. We show that the CNT growth process is inhomogeneous along the direction of the precursor flow, resulting in varying bulk density at different points on the growth substrate. We also study the effects of non-covalent functionalization of the CNTs after growth, using surfactant and nanoparticles, to vary the effective bulk density and structural arrangement of the arrays. We find that the stiffness and peak stress of the materials increase approximately linearly with increasing bulk density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic properties of iron-filled multi-walled carbon nanotubes dispersed in polystyrene (Fe-MWNT/PS) have been investigated as a function of Fe-MWNT concentration (0.1-15 wt%) from 300 to 10 K. Electron microscopy studies indicate that Fe nanorods (aspect ratio similar to 5) remain trapped at various lengths of MWNT and are thus, prevented from oxidation as well as aggregation. The magnetization versus applied field (M-H loop) data of 0.1 wt% of Fe-MWNTs in PS show an anomalous narrowing at low temperatures which is due to the significant contribution from shape anisotropy of Fe nanorods. The remanence shows a threshold feature at 1 wt%. The enhanced coercivity shows a maximum at 1 wt% due to the dominant dipolar interactions among Fe nanorods. Also the squareness ratio shows a maximum at 1 wt%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we address a closed-form analytical solution of the Joule-heating equation for metallic single-walled carbon nanotubes (SWCNTs). Temperature-dependent thermal conductivity kappa has been considered on the basis of second-order three-phonon Umklapp, mass difference, and boundary scattering phenomena. It is found that kappa, in case of pure SWCNT, leads to a low rising in the temperature profile along the via length. However, in an impure SWCNT, kappa reduces due to the presence of mass difference scattering, which significantly elevates the temperature. With an increase in impurity, there is a significant shift of the hot spot location toward the higher temperature end point contact. Our analytical model, as presented in this study, agrees well with the numerical solution and can be treated as a method for obtaining an accurate analysis of the temperature profile along the CNT-based interconnects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop lightweight, multilayer materials composed of alternating layers of poly dimethyl siloxane (PDMS) polymer and vertically aligned carbon nanotube (CNT) arrays, and characterize their mechanical response in compression. The CNT arrays used In the assembly are synthesized with graded mechanical properties along their thickness, and their use enables the creation of multilayer structures with low density (0.12-0.28 g/cm(3)). We test the mechanical response of structures composed of different numbers of CNT layers partially embedded in PDMS polymer, under quasi-static and dynamic loading. The resulting materials exhibit a hierarchical, fibrous structure with unique mechanical properties: They can sustain large compressive deformations (up to similar to 0.8 strain) with a nearly complete recovery and present strain localization in selected sections of the materials. Energy absorption, as determined by the hysteresis observed In stress-strain curves, is found to be at least 3 orders of magnitude larger than that of natural and synthetic cellular materials of comparable density. Conductive bucky paper Is Included within the polymer interlayers. This allows the measurement of resistance variation as a function of applied stress, showing strong correlation with the observed strain localization In compression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the electrical anisotropic transport properties of poly(methyl methacrylate) infiltrated aligned carbon nanotube mats. The anisotropy in the resistivity increases with decreasing temperature and the conduction mechanism in the parallel and perpendicular direction is different. Magnetoresistance (MR) studies also suggest anisotropic behavior of the infiltrated mats. Though MR is negative, an upturn is observed when the magnetic field is increased. This is due to the interplay of electron weak localization and electron-electron interactions mechanisms. Overall, infiltrated carbon nanotube mat is a good candidate for anisotropically conductive polymer composite and a simple fabrication method has been reported. (C) 2012 American Institute of Physics. [doi: 10.1063/1.3675873]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of aligned arrays of millimeter long carbon nanotubes (CNTs), from benzene and ferrocene as the molecular precursor and catalyst respectively, by a one-step chemical vapor deposition technique. The length of the grown CNTs depends on the reaction temperature and increases from similar to 85 mu m to similar to 1.4 mm when the synthesis temperature is raised from 650 to 1100 degrees C, while the tube diameter is almost independent of the preparation temperature and is similar to 80 nm. The parallel arrangement of the CNTs, as well as their tube diameter can be verified spectroscopically by small angle X-ray scattering (SAXS) studies. Based on electron diffraction scattering (EDS) studies of the top and the base of the CNT films, a root growth process can be deduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the walls of the defective multiwall carbon nanotube (MWCNT), and give possible mechanism for the formation of defective structure. A generalized model has been proposed for the MWCNT. which consists of (a) catalyst part, (b) embryo part and (c) full grown part. We claim that the weak embryo portion of the MWCNT, is structurally undeveloped. The stress due to pressure imbalance between inside and outside of the MWCNT during growth along with axial load at the embryo portion causes distortion, which is the source of bending and making the walls of the MWCNT off-concentric. At the later stage the stressed embryo retain the distorted structure and get transformed into fully gown defective CNT. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present field emission characteristics of multi-wall carbon nanotube (MWCNT)-polystyrene composites at various weight fractions along the cross-section of sample. Scanning electron microscope images in cross-sectional view reveal that MWCNTs are homogeneously distributed across the thickness and the density of protruding tubes can be scaled with weight fraction of the composite film. Field emission from composites has been observed to vary considerably with density of MWCNTs in the polymer matrix. High current density of 100 mA/cm(2) was achieved at a field of 2.2 V/lm for 0.15 weight fraction. The field emission is observed to follow the Fowler-Nordheim tunneling mechanism, however, electrostatic screening is observed to play a role in limiting the current density at higher weight fractions. (C) 2012 American Institute of Physics. [doi:10.1063/1.3685754]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to design efficient platform for siRNA delivery, we combine all atom classical and quantum simulations to study the binding of small interfering RNA (siRNA) by pristine single wall carbon nanotube (SWCNT). Our results show that siRNA strongly binds to SWCNT surface via unzipping its base-pairs and the propensity of unzipping increases with the increase in the diameter of the SWCNTs. The unzipping and subsequent wrapping events are initiated and driven by van der Waals interactions between the aromatic rings of siRNA nucleobases and the SWCNT surface. However, molecular dynamics (MD) simulations of double strand DNA (dsDNA) of the same sequence show that the dsDNA undergoes much less unzipping and wrapping on the SWCNT in the simulation time scale of 70 ns. This interesting difference is due to smaller interaction energy of thymidine of dsDNA with the SWCNT compared to that of uridine of siRNA, as calculated by dispersion corrected density functional theory (DFT) methods. After the optimal binding of siRNA to SWCNT, the complex is very stable which serves as one of the major mechanisms of siRNA delivery for biomedical applications. Since siRNA has to undergo unwinding process with the effect of RNA-induced silencing complex, our proposed delivery mechanism by SWCNT possesses potential advantages in achieving RNA interference. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3682780]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have reported the synthesis of ZnO nanotips on a multi walled carbon nanotube (MWCNT) mat by a vapour transport process. This combination of ZnO nanotips and a MWCNT mat exhibit ideal field emission behaviour. The turn on field and threshold field is found to be 0.34 and 1.5 V mu m(-1), respectively. The low threshold field is due to the good adherence of the ZnO nanotips on the MWCNT mat. The field enhancement factor is found to be 5 x 10(2) which is in agreement with the intrinsic field emission factor of ZnO nanotips. The emission current is found to be highly stable even at moderate vacuum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM). In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. doi:10.1063/1.3688083]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical arrays of carbon nanotubes (VACNTs) show unique mechanical behavior in compression, with a highly nonlinear response similar to that of open cell foams and the ability to recover large deformations. Here, we study the viscoelastic response of both freestanding VACNT arrays and sandwich structures composed of a VACNT array partially embedded between two layers of poly(dimethylsiloxane) (PDMS) and bucky paper. The VACNTs tested are similar to 2 mm thick foams grown via an injection chemical vapor deposition method. Both freestanding and sandwich structures exhibit a time-dependent behavior under compression. A power-law function of time is used to describe the main features observed in creep and stress-relaxation tests. The power-law exponents show nonlinear viscoelastic behavior in which the rate of creep is dependent upon the stress level and the rate of stress relaxation is dependent upon the strain level. The results show a marginal effect of the thin PDMS/bucky paper layers on the viscoelastic responses. At high strain levels (epsilon - 0.8), the peak stress for the anchored CNTs reaches similar to 45 MPa, whereas it is only similar to 15MPa for freestanding CNTs, suggesting a large effect of PDMS on the structural response of the sandwich structures. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3699184]