944 resultados para Naipaul, V. S. Half a life
Resumo:
The recognition of the importance of mRNA turnover in regulating eukaryotic gene expression has mandated the development of reliable, rigorous, and "user-friendly" methods to accurately measure changes in mRNA stability in mammalian cells. Frequently, mRNA stability is studied indirectly by analyzing the steady-state level of mRNA in the cytoplasm; in this case, changes in mRNA abundance are assumed to reflect only mRNA degradation, an assumption that is not always correct. Although direct measurements of mRNA decay rate can be performed with kinetic labeling techniques and transcriptional inhibitors, these techniques often introduce significant changes in cell physiology. Furthermore, many critical mechanistic issues as to deadenylation kinetics, decay intermediates, and precursor-product relationships cannot be readily addressed by these methods. In light of these concerns, we have previously reported transcriptional pulsing methods based on the c-fos serum-inducible promoter and the tetracycline-regulated (Tet-off) promoter systems to better explain mechanisms of mRNA turnover in mammalian cells. In this chapter, we describe and discuss in detail different protocols that use these two transcriptional pulsing methods. The information described here also provides guidelines to help develop optimal protocols for studying mammalian mRNA turnover in different cell types under a wide range of physiologic conditions.
Resumo:
The IUPAC-IUGS joint Task Group “Isotopes in Geosciences recommends a value of (49.61 ± 0.16) Ga for the half life of 87Rb, corresponding to a decay constant λ87 = (1.3972 ± 0.0045) × 10-11 a-1.
Resumo:
BACKGROUND Information about the impact of cancer treatments on patients' quality of life (QoL) is of paramount importance to patients and treating oncologists. Cancer trials that do not specify QoL as an outcome or fail to report collected QoL data, omit crucial information for decision making. To estimate the magnitude of these problems, we investigated how frequently QoL outcomes were specified in protocols of cancer trials and subsequently reported. DESIGN Retrospective cohort study of RCT protocols approved by six research ethics committees in Switzerland, Germany, and Canada between 2000 and 2003. We compared protocols to corresponding publications, which were identified through literature searches and investigator surveys. RESULTS Of the 173 cancer trials, 90 (52%) specified QoL outcomes in their protocol, 2 (1%) as primary and 88 (51%) as secondary outcome. Of the 173 trials, 35 (20%) reported QoL outcomes in a corresponding publication (4 modified from the protocol), 18 (10%) were published but failed to report QoL outcomes in the primary or a secondary publication, and 37 (21%) were not published at all. Of the 83 (48%) trials that did not specify QoL outcomes in their protocol, none subsequently reported QoL outcomes. Failure to report pre-specified QoL outcomes was not associated with industry sponsorship (versus non-industry), sample size, and multicentre (versus single centre) status but possibly with trial discontinuation. CONCLUSIONS About half of cancer trials specified QoL outcomes in their protocols. However, only 20% reported any QoL data in associated publications. Highly relevant information for decision making is often unavailable to patients, oncologists, and health policymakers.
Resumo:
A quantitative temperature accelerated life test on sixty GaInP/GaInAs/Ge triple-junction commercial concentrator solar cells is being carried out. The final objective of this experiment is to evaluate the reliability, warranty period, and failure mechanism of high concentration solar cells in a moderate period of time. The acceleration of the degradation is realized by subjecting the solar cells at temperatures markedly higher than the nominal working temperature under a concentrator Three experiments at three different temperatures are necessary in order to obtain the acceleration factor which relates the time at the stress level with the time at nominal working conditions. . However, up to now only the test at the highest temperature has finished. Therefore, we can not provide complete reliability information but we have analyzed the life data and the failure mode of the solar cells inside the climatic chamber at the highest temperature. The failures have been all of them catastrophic. In fact, the solar cells have turned into short circuits. We have fitted the failure distribution to a two parameters Weibull function. The failures are wear-out type. We have observed that the busbar and the surrounding fingers are completely deteriorate
Resumo:
In this work the failure analysis carried out in III-V concentrator multijunction solar cells after a temperature accelerated life test is presented. All the failures appeared have been catastrophic since all the solar cells turned into low shunt resistances. A case study in failure analysis based on characterization by optical microscope, SEM, EDX, EQE and XPS is presented in this paper, revealing metal deterioration in the bus bar and fingers as well as cracks in the semiconductor structure beneath or next to the bus bar. In fact, in regions far from the bus bar the semiconductor structure seems not to be damaged. SEM images have dismissed the presence of metal spikes inside the solar cell structure. Therefore, we think that for these particular solar cells, failures appear mainly as a consequence of a deficient electrolytic growth of the front metallization which also results in failures in the semiconductor structure close to the bus bars.
Resumo:
Includes bibliographical references.