960 resultados para NUCLEAR FACTOR-KAPPA B
Resumo:
Introduction: Systemic inflammation in sepsis is initiated by interactions between pathogen molecular motifs and specific host receptors, especially toll-like receptors (TLRs). Flagellin is the main flagellar protein of motile microorganisms and is the ligand of TLR5. The distribution of TLR5 and the actions of flagellin at the systemic level have not been established. Therefore, we determined TLR5 expression and the ability of flagellin to trigger prototypical innate immune responses and apoptosis in major organs from mice. Methods: Male Balb/C mice (n = 80) were injected intravenously with 1-5 mu g recombinant Salmonella flagellin. Plasma and organ samples were obtained after 0.5 to 6 h, for molecular investigations. The expression of TLR5, the activation state of nuclear factor kappa B (NF kappa B) and mitogen-activated protein kinases (MAPKs) [extracellular related kinase (ERK) and c-jun-NH2 terminal kinase (JNK)], the production of cytokines [tumor necrosis alpha (TNF alpha), interleukin-1 beta (IL-1 beta), interleukin-6 (IL-6), macrophage inhibitory protein-2 (MIP-2) and soluble triggering receptor expressed on myeloid cells (TREM-1)], and the apoptotic cleavage of caspase-3 and its substrate Poly(ADP-ribose) polymerase (PARP) were determined in lung, liver, gut and kidney at different time-points. The time-course of plasma cytokines was evaluated up to 6 h after flagellin. Results: TLR5 mRNA and protein were constitutively expressed in all organs. In these organs, flagellin elicited a robust activation of NF kappa B and MAPKs, and induced significant production of the different cytokines evaluated, with slight interorgan variations. Plasma TNF alpha, IL-6 and MIP-2 disclosed a transient peak, whereas IL-1 beta and soluble TREM-1 steadily increased over 6 h. Flagellin also triggered a marked cleavage of caspase-3 and PARP in the intestine, pointing to its ability to promote significant apoptosis in this organ. Conclusions: Bacterial flagellin elicits prototypical innate immune responses in mice, leading to the release of multiple pro-inflammatory cytokines in the lung, small intestine, liver and kidney, and also activates apoptotic signalling in the gut. Therefore, this bacterial protein may represent a critical mediator of systemic inflammation and intestinal barrier failure in sepsis due to flagellated micro-organisms
Resumo:
We have previously reported that in tumorigenic pancreatic beta-cells, calcitriol exerts a potent antitumorigenic effect by inducing apoptosis, cell growth inhibition, and reduction of solid beta-cell tumors. Here we have studied the molecular pathways involved in the antineoplastic activity of calcitriol on mouse insulinoma beta TC(3) cells, mouse insulinoma beta TC expressing or not expressing the oncogene p53, and beta TC-tet cells overexpressing or not the antiapoptotic gene Bcl2. Our results indicate that calcitriol-induced apoptosis was dependent on the function of p53 and was associated with a biphasic increase in protein levels of transcription factor nuclear factor-kappa B. Calcitriol decreased cell viability by about 40% in p53-retaining beta TC and in beta TC(3) cells; in contrast, beta TC p53(-/-) cells were only minimally affected. Calcitriol-induced cell death was regulated by members of the Bcl-2 family of apoptosis regulatory proteins, as shown by calcitriol-induced up-regulation of proapoptotic Bax and Bak and the lack of calcitriol-induced cytotoxicity in Bcl-2-overexpressing insulinoma cells. Moreover, calcitriol-mediated arrest of beta TC(3) cells in the G(1) phase of the cell cycle was associated with the abnormal expression of p21 and G(2)/M-specific cyclin B2 genes and involved the DNA damage-inducible factor GADD45. Finally, in beta TC(3) cells, calcitriol modulated the expression of IGF-I and IGF-II genes. In conclusion, these findings contribute to the understanding of the antitumorigenic effects of calcitriol on tumorigenic pancreatic beta-cells and further support the rationale of its utilization in the treatment of patients with malignant insulinomas.
Resumo:
Résumé Les agents pathogènes responsables d'infection entraînent chez l'hôte deux types de réponses immunes, la première, non spécifique, dite immunité innée, la seconde, spécifique à l'agent concerné, dite immunité adaptative. L'immunité innée, qui représente la première ligne de défense contre les pathogènes, est liée à la reconnaissance par les cellules de l'hôte de structures moléculaires propres aux micro-organismes (« Pathogen-Associated Molecular Patterns », PAMPs), grâce à des récepteurs membranaires et cytoplasmiques (« Pattern Recognition Receptors », PRRs) identifiant de manière spécifique ces motifs moléculaires. Les récepteurs membranaires impliqués dans ce processus sont dénommés toll-like récepteurs, ou TLRS. Lorsqu'ils sont activés par leur ligand spécifique, ces récepteurs activent des voies de signalisation intracellulaires initiant la réponse inflammatoire non spécifique et visant à éradiquer l'agent pathogène. Les deux voies de signalisation impliquées dans ce processus sont la voie des « Mitogen-Activated Protein Kinases » (MAPKs) et celle du « Nuclear Factor kappaB » (NF-κB), dont l'activation entraîne in fine l'expression de protéines de l'inflammation dénommées cytokines, ainsi que certaines enzymes produisant divers autres médiateurs inflammatoires. Dans certaines situations, cette réponse immune peut être amplifiée de manière inadéquate, entraînant chez l'hôte une réaction inflammatoire systémique exagérée, appelée sepsis. Le sepsis peut se compliquer de dysfonctions d'organes multiples (sepsis sévère), et dans sa forme la plus grave, d'un collapsus cardiovasculaire, définissant le choc septique. La défaillance circulatoire du choc septique touche les vaisseaux sanguins d'une part, le coeur d'autre part, réalisant un tableau de «dysfonction cardiaque septique », dont on connaît mal les mécanismes pathogéniques. Les bactéries à Gram négatif peuvent déclencher de tels phénomènes, notamment en libérant de l'endotoxine, qui active les voies de l'immunité innée par son interaction avec un toll récepteur, le TLR4. Outre l'endotoxine, la plupart des bactéries à Gram négatif relâchent également dans leur environnement une protéine, la flagelline, qui est le constituant majeur du flagelle bactérien, organelle assurant la mobilité de ces micro-organismes. Des données récentes ont indiqué que la flagelline active, dans certaines cellules, les voies de l'immunité innée en se liant au récepteur TLRS. On ne connaît toutefois pas les conséquences de l'interaction flagelline-TLRS sur le développement de l'inflammation et des dysfonctions d'organes au cours du sepsis. Nous avons par conséquent élaboré le présent travail en formulant l'hypothèse que la flagelline pourrait déclencher une telle inflammation et représenter ainsi un médiateur potentiel de la dysfonction d'organes au cours du sepsis à Gram négatif, en nous intéressant plus particulièrement àl'inflammation et à la dysfonction cardiaque. Dans la première partie de ce travail, nous avons étudié les effets de la flagelline sur l'activation du NF-κB et des MAPKs, et sur l'expression de cytokines inflammatoires au niveau du myocarde in vitro (cardiomyocytes en culture) et in vivo (injection de flagelline recombinante à des souris). Nous avons observé tout d'abord que le récepteur TLRS est fortement exprimé au niveau du myocarde. Nous avons ensuite démontré que la flagelline active la voie du NF-κB et des MAP kinases (p38 et JNK), stimule la production de cytokines et de chemokines inflammatoires in vitro et in vivo, et entraîne l'activation de polynucléaires neutrophiles dans le tissu cardiaque in vivo. Finalement, au plan fonctionnel, nous avons pu montrer que la flagelline entraîne une dilatation et une réduction aiguë de la contractilité du ventricule gauche chez la souris, reproduisant les caractéristiques de la dysfonction cardiaque septique. Dans la deuxième partie, nous avons déterminé la distribution du récepteur TLRS dans les autres organes majeurs de la souris (poumon, foie, intestin et rein}, et avons caractérisé dans ces organes l'effet de la flagelline sur l'activation du NF-κB et des MAPKs, l'expression de cytokines, et l'induction de l'apoptose. Nous avons démontré que le TLRS est exprimé de façon constitutive dans ces organes, et que l'injection de flagelline y déclenche les cascades de l'immunité innée et de processus apoptotiques. Finalement, nous avons également déterminé que la flagelline entraîne une augmentation significative de multiples cytokines dans le plasma une à six heures après son injection. En résumé, nos données démontrent que la flagelline bactérienne (a) entraîne une inflammation et une dysfonction importantes du myocarde et (b) active de manière très significative les mécanismes d'immunité innée dans les principaux organes et entraîne une réponse inflammatoire systémique. Par conséquent, la flagelline peut représenter un médiateur puissant de l'inflammation et de la dysfonction d'organes, notamment du coeur, au cours du choc septique déclenché par les bactéries à Gram négatif. Summary Pathogenic microorganisms trigger two kinds of immune responses in the host. The first one is immediate and non-specific and is termed innate immunity, whereas the second one, specifically targeted at the invading agent, is termed adaptative immunity. Innate immunity, which represents the first line of defense against invading pathogens, confers the host the ability to recognize molecular structures common to many microbial pathogens, ("Pathogen-Associated Molecular Patterns", PAMPs), through cytosolic or membrane-associated receptors ("Pattern Recognition Receptors", PRRs), the latter being represented by a family of receptors termed "toll-like receptors or TLRs". Once activated by the binding of their specific ligand, these receptors activate intracellular signaling pathways, which initiate the non-specific inflammatory response aimed at eradicating the pathogens. The two pathways implicated in this process are the mitogen-activated protein kinases (MAPK) and the nuclear factor kappa B (NF-κB) signaling pathways, whose activation elicit in fine the expression of inflammatory proteins termed cytokines, as well as various enzymes producing a wealth of additional inflammatory mediators. In some circumstances, the innate immune response can become amplified and dysregulated, triggering an overwhelming systemic inflammatory response in the host, identified as sepsis. Sepsis can be associated with multiple organ dysfunction (severe sepsis), and in its most severe form, with cardiovascular collapse, defming septic shock. The cardiovascular failure associated with septic shock affects blood vessels as well as the heart, resulting in a particular form of acute heart failure termed "septic cardiac dysfunction ", whose pathogenic mechanisms remain partly undefined. Gram-negative bacteria can initiate such phenomena, notably by releasing lipopolysaccharide (LPS), which activates innate immune signaling by interacting with its specific toll receptor, the TLR4. Besides LPS, most Gram-negative bacteria also release flagellin into their environment, which is the main structural protein of the bacterial flagellum, an appendage extending from the outer bacterial membrane, responsible for the motility of the microorganism. Recent data indicated that flagellin activate immune responses upon binding to its receptor, TLRS, in various cell types. However, the role of flagellin/TLRS interaction in the development of inflammation and organ dysfunction during sepsis is not known. Therefore, we designed the present work to address the hypothesis that flagellin might trigger such inflammatory responses and thus represent a potential mediator of organ dysfunction during Gram-negative sepsis, with a particular emphasis on cardiac inflammation and contractile dysfunction. In the first part of this work, we investigated the effects of flagellin on NF-κB and MAPK activation and the generation of pro-inflammatory mediators within the heart in vitro (cultured cardiomyocytes) and in vivo (injection of recombinant flagellin into mice). We first observed that TLRS protein is strongly expressed by the myocardium. We then demonstrated that flagellin activates NF-κB and MAP kinases (p38 and JNK), upregulates the transcription of pro-inflammatory cytokines and chemokines in vitro and in vivo, and stimulates the activation of polymorphonuclear neutrophils within the heart in vivo. Finally, we demonstrated that flagellin triggers acute cardiac dilation, and a significant reduction of left ventricular contractility, mimicking characteristics of clinical septic cardiac dysfunction. In the second part, we determined the TLRS distribution in other mice major organs (lung, liver, gut and kidney) and we characterized in these organs the effects of flagellin on NF-κB and MAPK activation, on the expression of pro-inflammatory çytokines, and on the induction of apoptosis. We demonstrated that TLRS protein is constitutively expressed and that flagellin activates prototypical innate immune responses and pro-apoptotic pathways in all these organs. Finally, we also observed that flagellin induces a significant increase of multiple cytokines in the plasma from 1 to 6 hours after its intravenous administration. Altogether, these data provide evidence that bacterial flagellin (a) triggers an important inflammatory response and an acute dysfunction of the myocardium, and (b) significantly activates the mechanisms of innate immunity in most major organs and elicits a systemic inflammatory response. In consequence, flagellin may represent a potent mediator of inflammation and multiple organ failure, notably cardiac dysfunction, during Gram-negative septic shock.
Resumo:
CONTEXT: Cirrhosis after viral hepatitis has been identified as a risk factor for osteoporosis in men. However, in postmenopausal women, most studies have evaluated the effect of primary biliary cirrhosis, but little is known about the effect of viral cirrhosis on bone mass [bone mineral density (BMD)] and bone metabolism. OBJECTIVE: Our objective was to assess the effect of viral cirrhosis on BMD and bone metabolism in postmenopausal women. DESIGN: We conducted a cross-sectional descriptive study. SETTING AND PATIENTS: We studied 84 postmenopausal female outpatients with viral cirrhosis and 96 healthy postmenopausal women from the general community. BMD was measured by dual-energy x-ray absorptiometry at lumbar spine (LS) and femoral neck (FN). RESULTS: The percentage with osteoporosis did not significantly differ between patients (LS, 43.1%; FN, 32.2%) and controls (LS, 41.2%; FN, 29.4%), and there was no difference in BMD (z-score) between groups. Serum concentrations of soluble TNF receptors, estradiol, and osteoprotegerin (OPG) were significantly higher in patients vs. controls (P < 0.001, P < 0.05, and P < 0.05, respectively). No significant difference was observed in urinary deoxypyridinoline. Serum OPG levels were positively correlated with soluble TNF receptors (r = 0.35; P < 0.02) and deoxypyridinoline (r = 0.37; P < 0.05). CONCLUSIONS: This study shows that bone mass and bone resorption rates do not differ between postmenopausal women with viral cirrhosis and healthy postmenopausal controls and suggests that viral cirrhosis does not appear to increase the risk of osteoporosis in these women. High serum estradiol and OPG concentrations may contribute to preventing the bone loss associated with viral cirrhosis in postmenopausal women.
Resumo:
Objectives: Neuropeptides are important signal initiators in advanced prostate cancer, partially acting through activation of nuclear factor kappa B. Central to nuclear factor kappa B regulation is the ubiquitin-proteasome system, pharmacological inhibition of which has been proposed as an anticancer strategy. We investigated the putative role of the proteasome inhibitor bortezomib in neuropeptides signaling effects on prostate cancer cells. Methods: Human prostate cancer cell lines, LNCaP and PC-3, were used to examine cell proliferation, levels of proapoptotic (caspase-3, Bad) and cell cycle regulatory proteins (p53, p27, p21), as well as total and phosphorylated Akt and p44/42 mitogen-activated protein kinase proteins. Furthermore, 20S proteasome activity, subcellular localization of nuclear factor kappa B and transcription of nuclear factor kappa B target genes, interleukin-8 and vascular endothelial growth factor, were assessed. Results: Neuropeptides (endothelin-1, bombesin) increased cell proliferation, whereas bortezomib decreased proliferation and induced apoptosis, an effect maintained after cotreatment with neuropeptides. Bad, p53, p21 and p27 were downregulated by neuropeptides in PC-3, and these effects were reversed with the addition of bortezomib. Neuropeptides increased proteasomal activity and nuclear factor kappa B levels in PC-3, and these effects were prevented by bortezomib. Interleukin-8 and vascular endothelial growth factor transcripts were induced after neuropeptides treatment, but downregulated by bortezomib. These results coincided with the ability of bortezomib to reduce mitogen-activated protein kinase signaling in both cell lines. Conclusions: These findings are consistent with bortezomib-mediated abrogation of neuropeptides-induced proliferative and antiapoptotic signaling. Thus, the effect of the drug on the neuropeptides axis needs to be further investigated, as neuropeptide action in prostate cancer might entail involvement of the proteasome.
Resumo:
Cell death is achieved by two fundamentally different mechanisms: apoptosis and necrosis. Apoptosis is dependent on caspase activation, whereas the caspase-independent necrotic signaling pathway remains largely uncharacterized. We show here that Fas kills activated primary T cells efficiently in the absence of active caspases, which results in necrotic morphological changes and late mitochondrial damage but no cytochrome c release. This Fas ligand-induced caspase-independent death is absent in T cells that are deficient in either Fas-associated death domain (FADD) or receptor-interacting protein (RIP). RIP is also required for necrotic death induced by tumor necrosis factor (TNF) and TNF-related apoptosis-inducing ligand (TRAIL). In contrast to its role in nuclear factor kappa B activation, RIP requires its own kinase activity for death signaling. Thus, Fas, TRAIL and TNF receptors can initiate cell death by two alternative pathways, one relying on caspase-8 and the other dependent on the kinase RIP.
Resumo:
The family of death domain (DD)-containing proteins are involved in many cellular processes, including apoptosis, inflammation and development. One of these molecules, the adapter protein MyD88, is a key factor in innate and adaptive immunity that integrates signals from the Toll-like receptor/interleukin (IL)-1 receptor (TLR/IL-1R) superfamily by providing an activation platform for IL-1R-associated kinases (IRAKs). Here we show that the DD-containing protein Unc5CL (also known as ZUD) is involved in a novel MyD88-independent mode of IRAK signaling that culminates in the activation of the transcription factor nuclear factor kappa B (NF-κB) and c-Jun N-terminal kinase. Unc5CL required IRAK1, IRAK4 and TNF receptor-associated factor 6 but not MyD88 for its ability to activate these pathways. Interestingly, the protein is constitutively autoproteolytically processed, and is anchored by its N-terminus specifically to the apical face of mucosal epithelial cells. Transcriptional profiling identified mainly chemokines, including IL-8, CXCL1 and CCL20 as Unc5CL target genes. Its prominent expression in mucosal tissues, as well as its ability to induce a pro-inflammatory program in cells, suggests that Unc5CL is a factor in epithelial inflammation and immunity as well as a candidate gene involved in mucosal diseases such as inflammatory bowel disease.
Resumo:
Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-kappa B and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38 alpha) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-alpha, markers of fibrosis (transforming growth factor-beta, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-kappa B activation, and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis. (J Am Coll Cardiol 2010;56:2115-25) (C) 2010 by the American College of Cardiology Foundation.
Resumo:
Detection of viral nucleic acids is central to antiviral immunity. Recently, DAI/ZBP1 (DNA-dependent activator of IRFs/Z-DNA binding protein 1) was identified as a cytoplasmic DNA sensor and shown to activate the interferon regulatory factor (IRF) and nuclear factor-kappa B (NF-kappaB) transcription factors, leading to type-I interferon production. DAI-induced IRF activation depends on TANK-binding kinase 1 (TBK1), whereas signalling pathways and molecular components involved in NF-kappaB activation remain elusive. Here, we report the identification of two receptor-interacting protein (RIP) homotypic interaction motifs (RHIMs) in the DAI protein sequence, and show that these domains relay DAI-induced NF-kappaB signals through the recruitment of the RHIM-containing kinases RIP1 and RIP3. We show that knockdown of not only RIP1, but also RIP3 affects DAI-induced NF-kappaB activation. Importantly, RIP recruitment to DAI is inhibited by the RHIM-containing murine cytomegalovirus (MCMV) protein M45. These findings delineate the DAI signalling pathway to NF-kappaB and suggest a possible new immune modulation strategy of the MCMV.
Resumo:
Peroxynitrite is a potent oxidant and nitrating species formed from the reaction between the free radicals nitric oxide and superoxide. An excessive formation of peroxynitrite represents an important mechanism contributing to cell death and dysfunction in multiple cardiovascular pathologies, such as myocardial infarction, heart failure and atherosclerosis. Whereas initial works focused on direct oxidative biomolecular damage as the main route of peroxynitrite toxicity, more recent evidence, mainly obtained in vitro, indicates that peroxynitrite also behaves as a potent modulator of various cell signal transduction pathways. Due to its ability to nitrate tyrosine residues, peroxynitrite affects cellular processes dependent on tyrosine phosphorylation. Peroxynitrite also exerts complex effects on the activity of various kinases and phosphatases, resulting in the up- or downregulation of signalling cascades, in a concentration- and cell-dependent manner. Such roles of peroxynitrite in the redox regulation of key signalling pathways for cardiovascular homeostasis, including protein kinase B and C, the MAP kinases, Nuclear Factor Kappa B, as well as signalling dependent on insulin and the sympatho-adrenergic system are presented in detail in this review.
Resumo:
AIMS: Connexins (Cxs) play a role in the contractility of the aorta wall. We investigated how connexins of the endothelial cells (ECs; Cx37, Cx40) and smooth muscle cells (SMCs; Cx43, Cx45) of the aorta change during renin-dependent and -independent hypertension. METHODS AND RESULTS: We subjected both wild-type (WT) mice and mice lacking Cx40 (Cx40(-/-)), to either a two-kidney, one-clip procedure or to N-nitro-l-arginine-methyl-ester treatment, which induce renin-dependent and -independent hypertension, respectively. All hypertensive mice featured a thickened aortic wall, increased levels of Cx37 and Cx45 in SMC, and of Cx40 in EC (except in Cx40(-/-) mice). Cx43 was up-regulated, with no effect on its S368 phosphorylation, only in the SMCs of renin-dependent models of hypertension. Blockade of the renin-angiotensin system of Cx40(-/-) mice normalized blood pressure and prevented both aortic thickening and Cx alterations. Ex vivo exposure of WT aortas, carotids, and mesenteric arteries to physiologically relevant levels of angiotensin II (AngII) increased the levels of Cx43, but not of other Cx. In the aortic SMC line of A7r5 cells, AngII activated kinase-dependent pathways and induced binding of the nuclear factor-kappa B (NF-kappaB) to the Cx43 gene promoter, increasing Cx43 expression. CONCLUSION: In both large and small arteries, hypertension differently regulates Cx expression in SMC and EC layers. Cx43 is selectively increased in renin-dependent hypertension via an AngII activation of the extracellular signal-regulated kinase and NF-kappaB pathways.
Resumo:
RESUME Nous rapportons l'étude d'une famille de 49 membres sur 5 générations. Parmi 35 membres étudiés, 18 sont atteints d'Osteolyse Expansive Familiale (OEF). L'OEF est une dysplasie osseuse génétique rare, autosomique dominante, dont les altérations locales et générales du squelette ont une distribution périphérique prédominante qui devient manifeste à partir de la deuxième décennie de vie. Une résorption ostéoclastique progressive, accompagnée d'une faible activité ostéoblastique, est à l'origine d'une expansion médullaire osseuse. Cette dernière est caractérisée par une raréfaction de la moelle osseuse qui est remplacée par du tissu fibreux et de la graisse. L'amincissement de la moelle osseuse aboutit à des déformations invalidantes, sévères et douloureuses du squelette, avec tendance aux fractures spontanées. La première manifestation clinique de la maladie est une surdité de transmission très précoce résultant d'une lyse de la chaîne ossiculaire. Radiologiquement, il existe toujours une pneumatisation marquée de la mastoïde et du rocher. Les dents montrent des signes importants de résorption osseuse au niveau de la région apicale et/ou du collet, dont l'aspect est caractéristique et unique. La phosphatase alcaline sérique, l'hydroxyproline et la deoxypiridoline urinaire sont élevées à des taux variables. Le taux de calcium et d'hormone parathyroïdienne est normal. Le traitement par les diphosphonates, la calcitonine et la vitamine D est inefficace. Histologiquement, l'OEF présente des similitudes avec la maladie de Paget, mais l'âge de début, la distribution des lésions osseuses, les altérations dentaires et de l'oreille moyenne, ainsi que la progression clinique sont différents. Il en va de même pour la dysplasie fibreuse, l'ostéite fibro-kystique et l'ostéogénèse imparfaite. Le gêne responsable de la maladie se localise dans la région du chromosome 18q21-22. Récemment, des mutations du TNFRSF 11A, gêne qui codifie le RANK, ont été identifiées comme étant la cause de l'OEF. La duplication de la 18ème paire de base au niveau de l'exon 1 suggère qu'il correspond au site de l'anomalie. La technique chirurgicale et les résultats audiométriques à court et long terme de 13 interventions chez 8 patients sont présentés. ABSTRACT Objectives: Familial Expansive Osteolysis (EEO) is a rare autosomal dominant bone dys¬plasia. The disease can show general and focal skeletal alterations, the latter having a pre¬dominantly peripheral distribution. Onset occurs after the second decade of life. Patients and methods: We present the study, of 30 years, of a family consisting of 49 members covering five generations. Results: Among the 35 members studied, 18 have familial expansive osteolysis (FEO). The first clinical sign of the condition is transmission deafness at an early age. The features of the teeth has a unique and characteristic appearance. Thinning of the corti¬cal bone leads to severe, painful, disabling deformities. Serum alkaline phosphatase, and urinary hydroxyproline and deoxipyridinoline are elevated. Calcium and parathyroid hor¬mone are normal. Treatment with diphosphonates, calcitonin and vitamin D has been unsuccessful. We present the surgical technology and the results to short and long term of 13 interventions on 8 patients. Conclusion: Progressive osteoclastic reabsorption accompanied by weak osteoblastic activ¬ity results in medullary expansion characterized by rarefaction of the bone marrow, which is replaced by fibrous tissue and fat. FE0 is histologically similar to Paget disease, but the age of onset, the distribution of the bone lesions, the dental and middle ear alterations, and the clin¬ical progression are different. These features also differentiate FE0 from fibrous dysplasia, fibrocystic osteitis and imperfect osteogenesis. The gene responsible for EEO is located in the 18q21-22 chromosome region. Mutations in TNFRSF11A, the gene encoding receptor activa¬tor of nuclear factor-kappa-B (RANK), has been recently identified as the cause of FEO. A duplication of 18 base pairs in exon 1 of the TNFRSF11A gene suggests that this corresponds to the site of the anomaly and can be considered a "hot spot" for mutations.
Resumo:
Rheumatoid arthritis is characterized by the presence of inflammatory synovitis and destruction of joint cartilage and bone. Tissue proteinases released by synovia, chondrocytes and pannus can cause cartilage destruction and cytokine-activated osteoclasts have been implicated in bone erosions. Rheumatoid arthritis synovial tissues produce a variety of cytokines and growth factors that induce monocyte differentiation to osteoclasts and their proliferation, activation and longer survival in tissues. More recently, a major role in bone erosion has been attributed to the receptor activator of nuclear factor kappa B ligand (RANKL) released by activated lymphocytes and osteoblasts. In fact, osteoclasts are markedly activated after RANKL binding to the cognate RANK expressed on the surface of these cells. RANKL expression can be upregulated by bone-resorbing factors such as glucocorticoids, vitamin D3, interleukin 1 (IL-1), IL-6, IL-11, IL-17, tumor necrosis factor-alpha, prostaglandin E2, or parathyroid hormone-related peptide. Supporting this idea, inhibition of RANKL by osteoprotegerin, a natural soluble RANKL receptor, prevents bone loss in experimental models. Tumor growth factor-ß released from bone during active bone resorption has been suggested as one feedback mechanism for upregulating osteoprotegerin and estrogen can increase its production on osteoblasts. Modulation of these systems provides the opportunity to inhibit bone loss and deformity in chronic arthritis.
Resumo:
Mitogen-activated protein kinases (MAPK) may be involved in the pathogenesis of acute renal failure. This study investigated the expression of p-p38 MAPK and nuclear factor kappa B (NF-kappaB) in the renal cortex of rats treated with gentamicin. Twenty rats were injected with gentamicin, 40 mg/kg, im, twice a day for 9 days, 20 with gentamicin + pyrrolidine dithiocarbamate (PDTC, an NF-kappaB inhibitor), 14 with 0.15 M NaCl, im, twice a day for 9 days, and 14 with 0.15 M NaCl , im, twice a day for 9 days and PDTC, 50 mg kg-1 day-1, ip, twice a day for 15 days. The animals were killed 5 and 30 days after the last of the injections and the kidneys were removed for histological, immunohistochemical and Western blot analysis and for nitrate determination. The results of the immunohistochemical study were evaluated by counting the p-p38 MAPK-positive cells per area of renal cortex measuring 0.05 mm². Creatinine was measured by the Jaffé method in blood samples collected 5 and 30 days after the end of the treatments. Gentamicin-treated rats presented a transitory increase in plasma creatinine levels. In addition, animals killed 5 days after the end of gentamicin treatment presented acute tubular necrosis and increased nitrate levels in the renal cortex. Increased expression of p-p38 MAPK and NF-kappaB was also observed in the kidneys from these animals. The animals killed 30 days after gentamicin treatment showed residual areas of interstitial fibrosis in the renal cortex, although the expression of p-p38 MAPK in their kidneys did not differ from control. Treatment with PDTC reduced the functional and structural changes induced by gentamicin as well as the expression of p-p38 MAPK and NF-kappaB. The increased expression of p-p38 MAPK and NF-kappaB observed in these rats suggests that these signaling molecules may be involved in the pathogenesis of tubulointerstitial nephritis induced by gentamicin.
Resumo:
Massive hepatectomy associated with infection induces liver dysfunction, or even multiple organ failure and death. Glycyrrhizin has been shown to exhibit anti-oxidant and anti-inflammatory activities. The aim of the present study was to investigate whether glycyrrhizin could attenuate endotoxin-induced acute liver injury after partial hepatectomy. Male Wistar rats (6 to 8 weeks old, weighing 200-250 g) were randomly assigned to three groups of 24 rats each: sham, saline and glycyrrhizin. Rats were injected intravenously with lipopolysaccharide (LPS) 24 h after 70% hepatectomy. Glycyrrhizin, pre-administered three times with 24 h intervals 48 h before hepatectomy, prolonged the survival of rats submitted to partial hepatectomy and LPS injection, compared with saline controls. Glycyrrhizin was shown to attenuate histological hepatic changes and significantly reduced serum levels of aspartate aminotransferase, alanine aminotransferase, and lactic dehydrogenase, at all the indicated times (6 rats from each were sacrificed 1, 3, 6, and 9 h after LPS injection), compared with saline controls. Glycyrrhizin also significantly inhibited hepatocyte apoptosis by down-regulating the expression of caspase-3 and inhibiting the release of cytochrome C from mitochondria into the cytoplasm. The anti-inflammatory activity of glycyrrhizin may rely on the inhibition of release of tumor necrosis factor-a, myeloperoxidase activity, and translocation of nuclear factor-kappa B into the nuclei. Glycyrrhizin also up-regulated the expression of proliferating cell nuclear antigen, implying that it might be able to promote regeneration of livers harmed by LPS. In summary, glycyrrhizin may represent a potent drug protecting the liver against endotoxin-induced injury, especially after massive hepatectomy.