998 resultados para NMR imaging
Resumo:
A complete analysis of H-1 and C-13 NMR spectra of the trypanocidal sesquiterpene lactone eremantholide C and two of its analogues is described. These structurally similar sesquiterpene lactones were submitted to H-1 NMR, C-13 (H-1) NMR, gCOSY, gHSQC, gHMBC, J-resolved and DPFGSE-NOE NMR techniques. The detailed analysis of those results, correlated to some computational calculations (molecular mechanics), led to the total and unequivocal assignment of all H-1 and C-13 NMR data. The determination of all H-1/H-1 coupling constants and all signal multiplicities, together with the elimination of previous ambiguities were also achieved. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
A new and promising nitrosyl ruthenium complex, [Ru(NO)(bdqi-COOH)(terpy)](PF(6))(3), bdqi-COOH is 3,4-diiminebenzoic acid and terpy is 2,2`-terpyridine, has been synthesized as a NO donor agent. The procedure used for [Ru(NO)(bdqi-COOH)(terpy)](PF(6))(3) synthesis has, apparently, yielded the formation of two isomers in which the ligand bdqi-COOH appears to be coordinated in its reduced form (bdcat-COOH), which could have differences in their pharmacological properties. Therefore, it was intended to separate the two possible isomers by high-performance liquid chromatography (HPLC) and to characterize them by high resolution mass spectrometry (QTOF MS) and by magnetic nuclear resonance spectroscopy (NMR). The results obtained by MS showed that the ESI-MS mass spectra of both HPLC column fractions, e.g. peak 1 and peak 2, are essentially equal, showing that both isomers display nearly identical gas-phase behavior with clusters of isotopologue ions centered at m/z 573, m/z 543 and m/z 513. Regarding the NMR analysis, the results showed that the positional isomerism is located in the bdqi-COOH ligand. From the observed results it can be concluded that the synthesis procedure that has been used results in the formation of two [Ru(terpy)(bdqi-COOH)NO](PF(6))(3) isomers. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
Time-averaged conformations of (+/-)-1-[3,4-(methylenedioxy)phenyl]-2-methylaminopropane hydrochloride (MDMA, ""ecstasy"") in D(2)O, and of its free base and trifluoroacetate in CDCl(3), were deduced from their (1)H NMR spectra and used to calculate their conformer distribution. Their rotational potential energy surface (PES) was calculated at the RHF/6-31G(d,p), 133LYP/6-31G(d,p), B3LYP/cc-pVDZ and AM1 levels. Solvent effects were evaluated using the polarizable continuum model. The NMR and theoretical studies showed that, in the free base, the N-methyl group and the ring are preferentially trans. This preference is stronger in the salts and corresponds to the X-ray structure of the hydrochloride. However, the energy barriers separating these forms are very low. The X-ray diffraction crystal structures of the anhydrous salt and its monohydrate differed mainly in the trans or cis relationship of the N-methyl group to the a-methyl, although these two forms interconvert freely in solution. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
This article describes a method to turn astronomical imaging into a random number generator by using the positions of incident cosmic rays and hot pixels to generate bit streams. We subject the resultant bit streams to a battery of standard benchmark statistical tests for randomness and show that these bit streams are statistically the same as a perfect random bit stream. Strategies for improving and building upon this method are outlined.
Resumo:
The gamma-radiolysis of poly(tetrafluoroethylene-co-perfuoromethyl vinyl ether) (TFE/PMVE) was investigated using solid state F-19 and C-13 NMR spectroscopy. Chain scission products identified in the polymer were saturated chain ends -CF2CF3 (G = 1.0), methyl ether end groups -CF2OCF3 (G = 0.9), acid end groups -CF2COOH (G = 0.5), and a small amount of terminal unsaturation -CF=CF2 (G = 0.2). A mechanism for the formation of these scission products was proposed and the G value for main chain scission, G(S), was determined to be 1.4. Cross-linking of TFE/PMVE was found to proceed via a Y-linking mechanism. The G value for cross-linking, G(X), was determined to be 0.9. A maximum of 0.2 mol % cross-links were formed under the experimental conditions.
Resumo:
A study of the gamma-radiolysis of the commercial polymers U-polymer, UP (Unitake) and polycarbonate, PC, (Aldrich) has been undertaken using ESR spectroscopy. The G-value of radical formation at 77 K has been found to be 0.31 +/- 0.01 for UP and 0.5 +/- 0.02 for PC. By using thermal annealing and spectral subtraction, the paramagnetic species formed on irradiation has been assigned. The effect of radiation on the chemical structure of UP and PC has been investigated at ambient temperature and at 423 K. The NMR results show that a new phenol type chain end is formed in the polymers on exposure to gamma-radiation. The G-value of formation of the new phenol ends was estimated to be 0.7 for PC (423 K) and 0.4 for UP (300 K). (C) 1998 John Wiley & Sons, Ltd.
Resumo:
Formaldehyde-derived oxazolidine derivatives 4-7 of the beta-adrenoreceptor antagonists metoprolol 1, atenolol 2 and timolol 3 have been synthesised. Conformational analysis of 1-3 and the oxazolidine derivatives 4-7 has been performed using H-1 NMR spectroscopy and computational methods. The H-1 NMR studies show that for the aryloxypropanolamine beta-adrenoreceptor antagonists there is a predominance of the conformer in which the amine group is approximately antiperiplanar or trans to the aryloxymethylene group. Both H-1 NMR data and theoretical studies indicate that the oxazolidine derivatives 4-7 and the aryloxypropanolamine beta-adrenoreceptor antagonists 1-3 adopt similar conformations around the beta-amino alcohol moiety. Thus, oxazolidine ring formation does not dramatically alter the preferred conformation adopted by the beta-amino alcohol moiety of 1-3. Oxazolidine derivatives of aryloxypropanolamine beta-adrenoreceptor antagonists may therefore be appropriate as prodrugs, or semi-rigid analogues, when greater lipophilicity is required for drug delivery.
Resumo:
Cerebral responses to alternating periods of a control task and a selective letter generation paradigm were investigated with functional Magnetic Resonance Imaging (fMRI). Subjects selectively generated letters from four designated sets of six letters from the English language alphabet, with the instruction that they were not to produce letters in alphabetical order either forward or backward, repeat or alternate letters. Performance during this condition was compared with that of a control condition in which subjects recited the same letters in alphabetical order. Analyses revealed significant and extensive foci of activation in a number of cerebral regions including mid-dorsolateral frontal cortex, inferior frontal gyrus, precuneus, supramarginal gyrus, and cerebellum during the selective letter generation condition. These findings are discussed with respect to recent positron emission tomography (PET) and fMRI studies of verbal working memory and encoding/retrieval in episodic memory.
Resumo:
alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha 3 beta 2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha 3 beta 2 interface. Here we describe the three-dimensional solution structure of MIT determined using 2D H-1 NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 Angstrom for the backbone atoms and 0.34 Angstrom for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha 3 beta 2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.
Resumo:
A biotin group was covalently attached to the C terminus of gramicidin A (gA) through a linker arm comprising a glycine residue with either one (gAXB) or two caproyl groups (gAXXB). High-resolution two-dimensional NMR spectroscopy was used to determine the structure of these modified gA analogues and [Lys(16)]gramicidin A (gA-Lys) in sodium dodecyl-d(25) sulphate micelles. Gated gA ion channels based on linking a receptor group to these gA analogues have been used recently as a component in a sensing device. The conformations of the gA backbones and amino acid side chains of lysinated gA and biotinylated gA in detergent micelles were found to be almost identical to that of native gA, i.e. that of an N-terminal to N-terminal (head to head) dimer formed by two right-handed, single-stranded beta(6.3) helices. The biotin tail of the gAXB and gAXXB and the lysine extremity of gA-Lys appeared to lie outside the micelle. Thus it appears that the covalent attachment of functional groups to the C terminus of gA does not disrupt the peptide's helical configuration. Further, single channel measurements of all three gA analogues showed that functioning ion channels were preserved within a membrane environment. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The Ile-->Ser84 substitution in the thyroid hormone transport protein transthyretin is one of over 50 variations found to be associated with familial amyloid polyneuropathy, a hereditary type of lethal amyloidosis. Using a peptide analogue of the loop containing residue 84 in transthyretin, we have examined the putative local structural effects of this substitution using H-1-NMR spectroscopy. The peptide, containing residues 71-93 of transthyretin with its termini linked via a disulfide bond, was found to possess the same helix-turn motif as in the corresponding region of the crystallographically derived structure of transthyretin in 20% trifluoroethanol (TFE) solution. It therefore, represents a useful model with which to examine the effects of amyloidogenic substitutions. In a peptide analogue containing the Ile84-->Ser substitution it was found that the substitution does not greatly disrupt the overall three-dimensional structure, but leads to minor local differences at the turn in which residue 84 is involved. Coupling constant and NOE measurements indicate that the helix-turn motif is still present, but differences in chemical shifts and amide-exchange rates reflect a small distortion. This is in keeping with observations that several other mutant forms of transthyretin display similar subunit interactions and those that have been structurally analysed possess a near native structure. We propose that the Ser84 mutation induces only subtle perturbations to the transthyretin structure which predisposes the protein to amyloid formation.
Resumo:
Magnetic resonance imaging (MRI) was used to evaluate and compare with anthropometry a fundamental bioelectrical impedance analysis (BIA) method for predicting muscle and adipose tissue composition in the lower limb. Healthy volunteers (eight men and eight women), aged 41 to 62 years, with mean (S.D.) body mass indices of 28.6 (5.4) kg/m(2) and 25.1 (5.4) kg/m(2) respectively, were subjected to MRI leg scans, from which 20-cm sections of thigh and IO-cm sections of lower leg (calf) were analysed for muscle and adipose tissue content, using specifically developed software. Muscle and adipose tissue were also predicted from anthropometric measurements of circumferences and skinfold thicknesses, and by use of fundamental BIA equations involving section impedance at 50 kHz and tissue-specific resistivities. Anthropometric assessments of circumferences, cross-sectional areas and volumes for total constituent tissues matched closely MRI estimates. Muscle volume was substantially overestimated (bias: thigh, -40%; calf, -18%) and adipose tissue underestimated (bias: thigh, 43%; calf, 8%) by anthropometry, in contrast to generally better predictions by the fundamental BIA approach for muscle (bias:thigh, -12%; calf, 5%) and adipose tissue (bias:thigh, 17%; calf, -28%). However, both methods demonstrated considerable individual variability (95% limits of agreement 20-77%). In general, there was similar reproducibility for anthropometric and fundamental BIA methods in the thigh (inter-observer residual coefficient of variation for muscle 3.5% versus 3.8%), but the latter was better in the calf (inter-observer residual coefficient of variation for muscle 8.2% versus 4.5%). This study suggests that the fundamental BIA method has advantages over anthropometry for measuring lower limb tissue composition in healthy individuals.
Resumo:
Circular dichroism and NMR spectroscopy have been used to determine the structure of the low-density lipoprotein (LDL) receptor-binding peptide, comprising residues 130-152, of the human apolipoprotein E. This peptide has little persistent three-dimensional structure in solution, but when bound to micelles of dodecylphosphocholine (DPC) it adopts a predominantly alpha-helical structure. The three-dimensional structure of the DPC-bound peptide has been determined by using H-1-NMR spectroscopy: the structure derived from NOE-based distance constraints and restrained molecular dynamics is largely helical. The derived phi and psi angle order parameters show that the helical structure is well defined but with some flexibility that causes the structures not to be superimposable over the full peptide length. Deuterium exchange experiments suggest that many peptide amide groups are readily accessible to the solvent, but those associated with hydrophobic residues exchange more slowly, and this helix is thus likely to be positioned on the surface of the DPC micelles. In this conformation the peptide has one hydrophobic face and two that are rich in basic amino acid side chains. The solvent-exposed face of the peptide contains residues previously shown to be involved in binding to the LDL receptor.