957 resultados para NICKEL(II)-BASED CATALYSTS
Resumo:
We found a novel morphology variation of carbon deposition derived from CH4 decomposition over NI-based catalysts. By altering the chemical composition and particle size of Ni-based catalysts, carbon filaments, nanofibres and nanotubes were observed over conventional Ni/y-Al2O3, Ni-Co/gamma-Al2O3 and nanoscale Ni-Co/gamma-Al2O3 catalysts, respectively. The simple introduction of Co into a conventional Ni/gamma-Al2O3 catalyst can vary the carbon deposition from amorphous filamentous carbon to ordered carbon fibres. Moreover, carbon nanotubes with uniform diameter distribution can be obtained over nanosized Ni-Co/gamma-Al2O3 catalyst particles. In addition, the oxidation behaviour of the different deposited carbon was studied by using a temperature-programmed oxidation technique. This work provides a simple strategy to control over the size and morphology of the carbon deposition from catalytic decomposition of CH4.
Resumo:
The oxidative dehydrogenation of ethane (ODE) with CO2 to C2H4 has been studied over a series of Cr-based catalysts using SiO2, Al2O3, (MCM-41 zeolite) MCM-41, MgO and Silicate-2 (Si-2) as the supports. TPR, NH3-TPD, and EPR characterizations of catalysts were carried out to investigate the reduction property of Cr species on different supports, the acidities of catalysts and Cr species of 6Cr/SiO2 catalysts, respectively.
Resumo:
The behavior of different species during the temperature-programmed surface reaction (TPSR) of methane over various catalysts is traced by an online mass spectrometer, It is demonstrated that the transformation of MoO3 to molybdenum carbide hinders the activation of methane as well as the succeeding aromatization in the TPSR, If this transformation process is done before the reaction, the temperature needed for methane activation and benzene formation will be greatly lowered (760 and 847 K, respectively). On the basis of comparison of the catalytic behavior of molybdenum supported on different zeolites, it is suggested that the initial activation of methane is the rate-determining step of this reaction. For the cobalt catalysts supported on HMCM-22 or Mo catalysts supported on TiO2, no benzene formation could be observed during the TPSR, However, the prohibition of benzene formation is different in nature over these two catalysts: the former lacks the special properties exhibited by molybdenum carbide, which can continuously activate methane even when multiple layers of carbonaceous species are formed on its surface, while the latter cannot accomplish the aromatization reaction since there are no Bronsted acid sites to which the activated intermediates can migrate, although the activation of methane can be achieved on it. Only for the catalysts that possess both of these properties, together with the special channel structure of zeolite, can efficient methane aromatization be accomplished. (C) 2000 Academic Press.
Resumo:
In this work, a new method for the simultaneous determination of Pb(II) and Cd(II) on the multiwalled carbon nanotubes (MWNT)-Nafion-bismuth modified glassy carbon electrode (GCE) using square-wave anodic stripping voltammetry has been studied. Scanning electron microscopy was used to investigate the characteristics of the MWNT-Nafion-bismuth modified GCE.
Resumo:
A capillary electrophoresis method coupled with electrochemiluminescence detection for the analysis of quinolizidine alkaloids was established, especially, oxymatrine (OMT) which could not be measured by previous electrochemiluminescence methods was detected sensitively herein. Complete separation of sophoridine (SR), matrine (MT) and OMT was achieved within 13 min using a background electrolyte of 50mM phosphate buffer at pH 8.4 and a separation voltage of 15 kV. The calibration curves showed a linear range from 2.8 x 10(-8) to 4.4 x 10(-7) M for SR, 2.7 x 10(-8) to 4.4 x 10(-7) M for MT.