976 resultados para NEUTRON BEAMS
Resumo:
The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.
Resumo:
In this paper we report a new neutron Compton scattering (NCS) measurement of the ground state single atom kinetic energy of polycrystalline beryllium at momentum transfers in the range 27}104 As ~1 and temperatures in the range 110}1150 K. The measurements have been made with the electron Volt spectrometer (eVS) at the ISIS facility and the measured kinetic energies are shown to be &10% higher than calculations made in the harmonic approximation.
Resumo:
We report inelastic neutron scattering measurements of the neutron Compton profile, J(y), for Be and for D in polycrystalline ZrD2 over a range of momentum transfers, q between 27 and 178 °A−1. The measurements were performed using the inverse geometry spectrometer eVS which is situated at the UK pulsed spallation neutron source ISIS. We have investigated deviations from impulse approximation (IA) scattering which are generically referred to as final state effects (FSEs) using a method described by Sears. This method allows both the magnitude and the q dependence of the FSE to be studied. Analysis of the measured data was compared with analysis of numerical simulations based on the harmonic approximation and good agreement was found for both ZrD2 and Be. Finally we have shown how (∇2V), where V is the interatomic potential, can be extracted from the antisymmetric component of J(y).
Resumo:
Accuracy of dose delivery in external beam radiotherapy is usually verified with electronic portal imaging (EPI) in which the treatment beam is used to check the positioning of the patient. However the resulting megavoltage x-ray images suffer from poor quality. The image quality can be improved by developing a special operating mode in the linear accelerator. The existing treatment beam is modified such that it produces enough low-energy photons for imaging. In this work the problem of optimizing the beam/detector combination to achieve optimal electronic portal image quality is addressed. The linac used for this study was modified to produce two experimental photon beams. These beams, named Al6 and Al10, were non-flat and were produced by 4MeV electrons hitting aluminum targets, 6 and 10mm thick respectively. The images produced by a conventional EPI system (6MV treatment beam and camera-based EPID with a Cu plate & Gd2O2S screen ) were compared with the images produced by the experimental beams and various screens with the same camera). The contrast of 0.8cm bone equivalent material in 5 cm water increased from 1.5% for the conventional system to 11% for the combination of Al6 beam with a 200mg/cm2 Gd2O2S screen. The signal-to-noise ratio calculated for 1cGy flood field images increased by about a factor of two for the same EPI systems. The spatial resolution of the two imaging systems was comparable. This work demonstrates that significant improvements in portal image contrast can be obtained by simultaneous optimization of the linac spectrum and EPI detector.
Resumo:
The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.
Resumo:
Damage detection using modal properties is a widely accepted method. However, quantifying such damage using modal properties is still not well established. With this in mind, a research project is presently underway towards the development of a procedure to detect, locate and quantify damage in structural components using the variations in modal properties. A novel vibration based parameter called Vibration based Damage Index is introduced into the damage assessment procedure. This paper presents the early part of the research project which treats flexural members. The proposed procedure is validated using experimental data and/or theoretical techniques and illustrated through application. Outcomes of this research highlight the ability of the proposed procedure to successfully detect, locate and quantify damage in flexural structural components using the modal properties of the first few modes.
Resumo:
A new cold formed structural section known as the hollow flange beam is currently under development in Australia. This section will have many applications, particularly in portal frame buildings. This paper discusses the lateral distortional buckling behaviour of the hollow flange beam.
Resumo:
A new cold-formed and resistance welded section known as the Hollow Flange Beam (HFB) has been developed recently in Australia. In contrast to the common lateral torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral distortional buckling mode of failure involving lateral deflection, twist, and cross-section change due to web distortion. This lateral distortional buckling behavior has been shown to cause significant reduction of the available flexural capacity of HFBs. An investigation using finite element analyses and large scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the finite element model and analytical results. The experimental procedure and results are outlined in a companion paper at this conference.
Resumo:
A new cold-formed and resistance welded section known as the Hollow Flange Beam (HFB) has been developed recently in Australia. In contrast to the common lateral torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral distortional buckling mode of failure involving lateral deflection, twist and cross-section change due to web distortion. This lateral distortional buckling behaviour has been shown to cause significant reduction of the available flexural strength of HFBs. An investigation using finite element analyses and large scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the experimental investigation, the results, and the final stiffener arrangement whereas the details of the finite element analyses are presented in a companion paper at this conference.
Resumo:
A new cold-formed and resistance-welded section known as the hollow flange beam (HFB) has been developed recently in Australia. In contrast to the common lateral-torsional buckling mode of I-beams, this unique section comprising two stiff triangular flanges and a slender web is susceptible to a lateral-distortional buckling mode of failure involving lateral deflection, twist, and cross-section change due to web distortion. This lateral-distortional buckling behavior has been shown to cause significant reduction of the available flexural capacity of HFBs. An investigation using finite-element analyses and large-scale experiments was carried out into the use of transverse web plate stiffeners to improve the lateral buckling capacity of HFBs. This paper presents the details of the finite-element model and analytical results. The experimental procedure and results are outlined in a companion paper.
Resumo:
The hollow flange beam (HFB) is a new cold-formed and resistance-welded section developed in Australia. Due to its unique geometry comprising two stiff triangular flanges and a slender web, the HFB is susceptible to a lateral-distortional buckling mode of failure involving web distortion. Investigation using finite-element analyses showed that the use of transverse web plate stiffeners effectively eliminated lateral-distortional buckling of HFBs and thus any associated reduction in flexural capacity. A detailed experimental investigation was then carried out to validate the results from the finite-element analysis and to improve the stiffener configuration further. This led to the development of a special stiffener that is screw-fastened to the flanges on alternate sides of the web. This paper presents the details of the experimental investigations, the results, and the final stiffener arrangement whereas the details of the finite-element analyses are presented in a companion paper.
Resumo:
The hollow flange beam (HFB) is a unique cold-formed steel section developed in Australia for use as a flexural member. Research has identified that the HFB section's flexural capacity for intermediate span members is limited by lateral distortional buckling, which is characterized by simultaneous lateral deflection, twist, and web distortion. This buckling behaviour is mainly due to the unique geometry of the section, comprising two torsionally stiff triangular flanges connected by a slender web. This paper presents a finite element analytical model suitable for non-linear analysis of HFB flexural members. The model includes all significant effects that may influence the ultimate capacity of such members, including material inelasticity, local buckling, member instability, web distortion, residual stresses, and geometric imperfections. It was found to accurately predict both the elastic lateral distortional buckling moments and the ultimate capacities of HFB flexural members, and was therefore used in the development of design curves and suitable design procedures.