1000 resultados para NEUROSCIENCES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tendon reflexes have been often used in studies of the human nervous system in health and disease. They have been investigated either in response to single tendon taps or to long duration vibrations. Tendon reflexes are described here in response to a high frequency vibration burst (3 cycles of a 100 Hz sine wave) applied to the Achilles tendon of standing subjects, either in quiet stance or during a forward leaning posture. The electromyogram from the soleus muscle usually showed three components separated by 10 ms which were interpreted as being three reflexes, each reflex induced by each of the three cycles in a burst. This result indicates that soleus tendon reflexes can respond in fast succession in a phasic manner when a brief high frequency vibration is applied to the Achilles tendon. This occurs in spite of possible depression of the la to motoneuron synapses and the long after hyperpolarization of the motoneurons. An interpretation of the results is that motoneurons from different subsets of the motoneuron pool respond to different cycles of the sinusoidal vibratory burst. (c) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postural control was studied when the subject was kneeling with erect trunk in a quiet posture and compared to that obtained during quiet standing. The analysis was based on the center of pressure motion in the sagittal plane (CPx), both in the time and in the frequency domains. One could assume that postural control during kneeling would be poorer than in standing because it is a less natural posture. This could cause a higher CPx variability. The power spectral density (PSD) of the CPx obtained from the experimental data in the kneeling position (KN) showed a significant decrease at frequencies below 0.3 Hz compared to upright (UP) (P < 0.01), which indicates less sway in KN. Conversely, there was an increase in fast postural oscillations (above 0.7 Hz) during KN compared to UP (P < 0.05). The root mean square (RMS) of the CPx was higher for UP (P < 0.01) while the mean velocity (MV) was higher during KN (P < 0.05). Lack of vision had a significant effect on the PSD and the parameters estimated from the CPx in both positions. We also sought to verify whether the changes in the PSD of the CPx found between the UP and KN positions were exclusively due to biomechanical factors (e.g., lowered center of gravity), or also reflected changes in the neural processes involved in the control of balance. To reach this goal, besides the experimental approach, a simple feedback model (a PID neural system, with added neural noise and controlling an inverted pendulum) was used to simulate postural sway in both conditions (in KN the pendulum was shortened, the mass and the moment of inertia were decreased). A parameter optimization method was used to fit the CPx power spectrum given by the model to that obtained experimentally. The results indicated that the changed anthropometric parameters in KN would indeed cause a large decrease in the power spectrum at low frequencies. However, the model fitting also showed that there were considerable changes also in the neural subsystem when the subject went from standing to kneeling. There was a lowering of the proportional and derivative gains and an increase in the neural noise power. Additional increases in the neural noise power were found also when the subject closed his eyes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In contrast to marking of the location of resources or sexual partners using single-spot pheromone sources, pheromone paths attached to the substrate and assisting orientation are rarely found among flying organisms. However, they do exist in meliponine bees (Apidae, Apinae, Meliponini), commonly known as stingless bees, which represent a group of important pollinators in tropical forests. Worker bees of several Neotropical meliponine species, especially in the genus Scaptotrigona Moure 1942, deposit pheromone paths on substrates between highly profitable resources and their nest. In contrast to past results and claims, we find that these pheromone paths are not an indispensable condition for successful recruitment but rather a means to increase the success of recruiters in persuading their nestmates to forage food at a particular location. Our results are relevant to a speciation theory in scent path-laying meliponine bees, such as Scaptotrigona. In addition, the finding that pheromone path-laying bees are able to recruit to food locations even across barriers such as large bodies of water affects tropical pollination ecology and theories on the evolution of resource communication in insect societies with a flying worker caste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Looking for possible neuroimmune relationships, we analyzed the effects of methylenedioxymethamphetamine (MDMA) administration on neuroendocrine, neutrophil activity and leukocyte distribution in mice. Methods: Five experiments were performed. In the first, mice were treated with MDMA (10 mg/kg) 30, 60 min and 24 h prior to blood sample collection for neutrophil activity analysis. In the second experiment, the blood of nave mice was collected and incubated with MDMA for neutrophil activity in vitro analysis. In the third and fourth experiments, mice were injected with MDMA (10 mg/kg) and 60 min later, blood and brain were collected to analyze corticosterone serum levels and hypothalamic noradrenaline (NA) levels and turnover. In the last experiment, mice were injected with MDMA 10 mg/kg and 60 min later, blood, bone marrow and spleen were collected for leukocyte distribution analysis. Results: Results showed an increase in hypothalamic NA turnover and corticosterone serum levels 60 min after MDMA (10 mg/kg) administration, a decrease in peripheral blood neutrophil oxidative burst and a decrease in the percentage and intensity of neutrophil phagocytosis. It was further found that MDMA (10 mg/kg) treatment also altered leukocyte distribution in blood, bone marrow and spleen. In addition, no effects were observed for MDMA after in vitro exposure both in neutrophil oxidative burst and phagocytosis. Conclusion: The effects of MDMA administration (10 mg/kg) on neutrophil activity and leukocyte distribution might have been induced indirectly through noradrenergic neurons and/or hypothalamic-pituitary-adrenal axis activations. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyamines (putrescine, spermidine and spermine) are important endogenous regulators of ion channels, such as vanilloid (TRPV1), glutamatergic (NMDA or AMPA/kainate) and acid-sensitive (ASIC) receptors. In the present study, we have investigated the possible nociceptive effect induced by polyamines and the mechanisms involved in this nociception in vivo. The subcutaneous (s.c.) injection of capsaicin (as positive control), spermine, spermidine or putrescine produced nociception with ED(50) of 0.16 (0.07-0.39) nmol/paw, 0.4 (0.2-0.7) mu mol/paw, 0.3 (0.1-0.9) mu mol/paw and 3.2 (0.9-11.5) mu mol/paw, respectively. The antagonists of NMDA (MK801, 1 nmol/paw), AMPA/kainate (DNQX, 1 nmol/paw) or ASIC receptors (amiloride, 100 nmol/paw) failed to reduce the spermine-trigged nociception. However, the TRPV1 antagonists capsazepine or SB366791 (1 nmol/paw) reduced spermine-induced nociception, with inhibition of 81 +/- 10 and 68 +/- 9%, respectively. The previous desensitization with resiniferatoxin (RTX) largely reduced the spermine-induced nociception and TRPV1 expression in the sciatic nerve, with reductions of 82 +/- 9% and 67 +/- 11%, respectively. Furthermore, the combination of spermine (100 nmol/paw) and RTX (0.005 fmol/paw), in doses which alone were not capable of inducing nociception, produced nociceptive behaviors. Moreover, different concentrations of spermine (3-300 mu M) enhanced the specific binding of [(3)H](center dot)-RTX to TRPV1 receptor. Altogether, polyamines produce spontaneous nociceptive effect through the stimulation of TRPV1, but not of ionotropic glutamate or ASIC receptors. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain mitochondrial ATP-sensitive K+ channel (mito-K-ATP) opening by diazoxide protects against ischemic damage and excitotoxic cell death. Here we studied the redox properties of brain mito-K-ATP. Mito-K-ATP activation during excitotoxicity in cultured cerebellar granule neurons prevented the accumulation of reactive oxygen species (ROS) and cell death. Furthermore, mito-K-ATP activation in isolated brain mitochondria significantly prevented H2O2 release by these organelles but did not change Ca2+ accumulation capacity. Interestingly, the activity of mito-K-ATP was highly dependent on redox state. The thiol reductant mercaptopropionylglycine prevented mito-K-ATP activity, whereas exogenous ROS activated the channel. In addition, the use of mitochondrial substrates that led to higher levels of endogenous mitochondrial ROS release closely correlated with enhanced K+ transport activity through mito-K-ATP. Altogether, our results indicate that brain mito-K-ATP is a redox-sensitive channel that controls mitochondrial ROS release. (c) 2008 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rationale Serotonin in the dorsal periaqueductal gray (DPAG) through the activation of 5-HT(1A) and 5-HT(2A) receptors inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with antipanic drugs that nonselectively or selectively blocks the reuptake of serotonin (e.g., imipramine and fluoxetine, respectively) enhances the inhibitory effect on escape caused by intra-DPAG injection of 5-HT(1A) and 5-HT(2A) receptor agonists. It has been proposed that these compounds exert their effect on panic by facilitating 5-HT-mediated neurotransmission in the DPAG. Objectives The objective of this study was to investigate whether facilitation of 5-HT neurotransmission in the DPAG is also observed after treatment with alprazolam, a pharmacologically distinct antipanic drug that acts primarily as a high potency benzodiazepine receptor agonist. Materials and methods Male Wistar rats, subchronically (3-6 days) or chronically (14-17 days) treated with alprazolam (2 and 4 mg/kg, i.p.) were intra-DPAG injected with (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), (+/-)-1-(2,5-dimethoxy-4-iodophenyl) piperazine dihydrochloride (DOI), and midazolam, respectively, 5-HT(1A), 5-HT(2A/2C), and benzodiazepine receptor agonists. The intensity of electrical current that needed to be applied to the DPAG to evoke escape behavior was measured before and after the microinjection of these agonists. Results Intra-DPAG injection of the 5-HT agonists and midazolam increased the escape threshold in all groups of animals tested, indicating a panicolytic-like effect. The inhibitory effect of 8-OH-DPAT and DOI, but not midazolam, was significantly higher in animals receiving long-, but not short-term treatment with alprazolam. Conclusions Alprazolam as antidepressants compounds facilitates 5-HT(1A)- and 5-HT(2A)-receptor-mediated neurotransmission in the DPAG, implicating this effect in the mode of action of different classes of antipanic drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of repetitive stress during acute infection with Trypanosoma cruzi (T. cruzi) on the chronic phase of ensuing Chagas` disease was the focus of this investigation. The aim of this study was to evaluate in Wistar rats the influence of repetitive stress during the acute phase of infection (7 days) with the Y strain of T. cruzi on the chronic phase of the infection (at 180 days). Exposure to ether vapor for 1min twice a day was used as a stressor. Repetitive stress enhanced the number of circulating parasites and cardiac tissue disorganization, from a moderate to a severe diffuse mononuclear inflammatory process and the presence of amastigote burden in the cardiac fibers. Immunological parameters revealed that repetitive stress triggered a reduced concanavalin A induced splenocyte proliferation in vitro with major effects on the late chronic phase. Serum interleukin-12 concentration decreased in both stressed and infected rats in the early phase of infection although it was higher on 180 days post-infection. These results suggest that repetitive stress can markedly impair the host`s immune system and enhance the pathological process during the chronic phase of Chagas` disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Control of the acute phase of Trypanosoma cruzi infection is critically dependent on cytokine-mediated macrophage activation to intracellular killing, natural killer (NK) cells, CD4(+) T cells, CD8(+) T cells and B cells. Cell-mediated immunity in T. cruzi infection is also modulated by cytokines, but in addition to parasite-specific responses, autoimmunity can be also triggered. Importantly, cytokines may also play a role in the cell-mediated immunity of infected subjects. Here we studied the role of cytokines in the regulation of innate and adaptive immunity during the acute phase of T. cruzi infection in Wistar rats. Melatonin is an effective regulator of the immune system. Macrophages and T lymphocytes, which have melatonin receptors, are target cells for the immunomodulatory function of melatonin. In this paper melatonin was orally given via two protocols: prior to and concomitant with infection. Both treatments were highly effective against T. cruzi with enhanced action for the concomitant treatment. The data suggest an up-regulation of the TH-1 immune response as all analyzed parameters, interleukin (IL)-4, IL-10, transforming growth factor-beta 1 and splenocyte proliferation, displayed reduced levels as compared with the untreated counterparts. However, the direct effects of melatonin on immune cells have not been fully investigated during T. cruzi infection. We conclude that in light of the current results, melatonin exerted important therapeutic benefits through its immune regulatory effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pro-inflammatory and modulatory cytokines have an essential role in host defense against human and murine Trypanosoma cruzi infection. Control of T. cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. Melatonin has been proposed to regulate the immune system by affecting cytokine production in immunocompetent cells, enhancing the production of several T helper (Th)1 cytokines. The aims of this work were to evaluate in rats, the influences of exogenous melatonin treatment on T. cruzi-infected host`s immune responses. With this in mind, several immunological parameters were analyzed, including tumor necrosis factor-alpha, gamma-interferon, interleukin-12, nitric oxide (NO) and macrophage count. The melatonin therapy was provided in one of two different treatment regimens, that is, either beginning 7 days prior to infection or concomitant with the infection. Both treatments triggered an up-regulation of the immune response, with the concomitant treatment being more effective; in this case all cytokines studied, with exception of NO, displayed enhanced concentrations and there was a higher number of peritoneal macrophages, which displayed reduced concentrations under melatonin therapy. We conclude that melatonin plays a pivotal role in up-regulating the Th1 immune response thus controlling parasite replication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies showed that melatonin or dehydroepiandrosterone (DHEA) enhances the immune response against parasitic pathogens. The present study investigated the in vitro activity of melatonin combined with DHEA in a period of 24 hr during the course of in vivo T. cruzi infection. The in vitro activity of melatonin or DHEA alone, as well as together, were tested for the trypomastigote forms (doses ranging from 0.5 to 128 mu m). In vitro, neither melatonin nor DHEA alone had any activity against trypomastigote forms, although when the highest concentration of combined melatonin and DHEA was used, it was active against the trypomastigote forms of the parasite. However, for this concentration, a quite toxicity on peritoneal macrophages was observed. For in vivo evaluation, male Wistar rats were infected with the Y strain of T. cruzi. They were orally treated with 10 mg/kg body weight/day of melatonin and subcutaneously with 40 mg/kg body weight/day of DHEA. Treatment with melatonin, DHEA and the association showed a significant reduction in the number of blood trypomastigotes during the acute phase of infection as compared to untreated animals (P < 0.05). A significant increase in the number of macrophages and nitric oxide (NO) concentrations were observed during the peak of parasitaemia with melatonin alone or combined with DHEA. However, with DHEA alone the highest concentration of NO was observed (P < 0.05). Moreover, DHEA treatment increased TNF-alpha levels during the infection (P < 0.05). These results show that melatonin, DHEA or the combination of both reduces parasitemia during the acute phase of infection. The combined action of both molecules did not exert a synergic action on the host`s ability to fight infection, and it seems that among all treatments DHEA induces a more efficient immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gonadal steroids exert an important influence on the host immune response during infection. Changes resulting from the absence or replacement of gonadal hormones may represent a distinct evolution of a particular parasite. Taking into account the greater susceptibility of males to parasites, the magnitude of the immune response seems to depend on the interaction of many hormones that will act synergistically with other immune cells. The aims of this research were to evaluate the effects of the luck of male sex hormones due to orchiectomy, and the influence of oral administration of melatonin on the immune response of male Wistar rats infected with the Y strain of Trypanosoma cruzi. The percentage of CD3(+) CD4(+) and CD3(+) CD8(+) lymphocyte T cell subsets were evaluated using flow cytometry and the measurement of IL-2 and IL-12. For all parameters examined, a synergistic action of melatonin and orchiectomy on the host`s immune response was observed, promoting an effective response against the parasite during the acute phase of infection. These results offer insight into other possibilities for possibly controlling T. cruzi proliferation through melatonin therapy and also the stimulatory effects on host`s immune response triggered by the absence of male gonadal steroids during the acute phase of infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Myofiber degeneration, inflammation, and fibrosis are remarkable features of Duchenne muscular dystrophy. We hypothesized that the administration of imatinib mesylate, an inhibitor of tyrosine kinase and TGF-beta pro-fibrogenic activity, could improve the muscular conditions in mdx mice. Four-week old mdx mice were treated and exercised for 6 weeks. Gastrocnemius and diaphragm histopathology, strength, creatine kinase, and cytokine levels were evaluated. The treated group presented increased muscular strength and decreased CK levels, injured myofibers, and inflammatory infiltrates. Pro-inflammatory cytokines and TGF-beta were also reduced, while IL-10 was increased, suggesting an immunomodulatory effect of imatinib, which can ameliorate the dystrophic phenotype in mdx mice. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies revealed that vasopressinergic neurons have a high content of cys-leukotriene C(4) (LTC(4)) synthase, a critical enzyme in cys-leukotriene synthesis that may play a role in regulating vasopressin secretion. This study investigates the role of this enzyme in arginine vasopressin (AVP) release during experimentally induced sepsis. Male Wistar rats received an i.c.v. injection of 3-[1-(p-chlorobenzyl)-5-(isopropyl)-3-tert-butylthioindol-2-yl]-2, 2-dimethylpropanoic acid (MK-886) (1.0 mu g/kg), a leukotrienes (LTs) synthesis inhibitor, or vehicle, 1 h before cecal ligation and puncture (CLP) or sham operation. In one group of animals the survival rate was monitored for 3 days. In another group, the animals were decapitated at 0, 4, 6, 18 and 24 h after CLP or sham operation, and blood was collected for hematocrit, serum sodium and nitrate, plasma osmolality, protein and AVP determination. A third group was used for blood pressure measurements. The neurohypophysis was removed for quantification of AVP content, and the hypothalamus was dissected for LTC4 synthase analysis by Western blot. Mortality after CLP was reduced by the central administration of MK-886. The increase in plasma AVP levels and hypothalamus LTC4 synthase content in the initial phase of sepsis was blocked, whereas the decrease in neurohypophyseal AVP content was partially reversed. Also the blood pressure drop was abolished in this phase. The increase of serum nitric oxide and hematocrit was reduced, and the decrease in plasma protein and osmolality was not affected by the LTs blocker. In the final phase of sepsis, the plasma AVID level and the hypothalamic LTC4 synthase content were at basal levels. The central administration of MK-886 increased the hypothalamic LTC4 synthase content but did not alter the plasma and neurohypophysis AVID levels observed, or the blood pressure during this phase. These results suggest that the central LTs are involved in the vasopressin release observed during sepsis. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.