216 resultados para NEUROPEPTIDES


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptides are ubiquitous intercellular signalling molecules in all Metazoa with nervous systems. Research over the past 10 years has confirmed through immunocytochemistry that neuropeptides are widespread and abundant in the nervous systems of helminth parasites. Biochemical isolation and characterisation studies have indentified the primary structures of numerous structurally-related peptides in helminths, the best studied being the FMRFamide-related peptides (FaRPs). While to date only four FaRPs have been identified from platyhelminths, some 60 FaRPs or FaRP-like peptides have been isolated or predicted for nematodes. Preliminary physiological studies have shown that FaRPs are strongly myoactive, but with quire different actions in the two groups of helminth parasite. The absence of FaRPs from vertebrates suggests compounds with a high affinity for FaRP receptors are likely to have selective effects against helminths and, if protected from degradation, could have therapeutic potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuropeptides, biogenic amines and acetylcholine are expressed abundantly within the nervous systems of parasitic flatworms, and are particularly evident in the innervation of the musculature. Such associations have implicated the nervous system in locomotion, host attachment and reproductive co-ordination. Information on the muscle systems of parasitic flatworms is generally sparse, in particular those muscles associated with the reproductive system, intestinal tract and attachment apparatus. Also, the use of sectioned material has left description of the 3-dimensional organization of the musculature largely unrecorded. Using fluorescein isothiocyanate (FITC)-labelled phalloidin as a site-specific probe for filamentous actin, applied to whole-mount preparations of adult Fasciola hepatica and examined by confocal scanning laser microscopy, the present work reports on the organization of the major muscle systems in this trematode parasite. A highly regular array of outer circular, intermediate longitudinal and inner diagonal fibres distinguishes the body wall musculature, which is also involved in the development of both ventral and oral suckers. Circular fibres dominate the duct walls of the male and female reproductive systems, whereas the muscles of the intestinal tract have a somewhat diffuse arrangement of fibres. An understanding of the structural complexity of the muscle systems of parasitic flatworms is considered as fundamental to the interpretation of results from physiological experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultrastructure of the nervous system of a planarian, Procerodes littoralis, belonging to the taxon Maricola is described for the first time. The study has revealed the presence of two neuronal cell types and a glia-like cell. Immunogold labelling with antibodies to two native flatworm neuropeptides-neuropeptide F and GNFFRFamide-has been localised to one neuronal cell type and associated processes and synapses, thus indicating its peptidergic nature. The ultrastructural features are compared to those of other investigated turbellarian species. The number of features shared by species from the Proseriata, Lecitoepitheliata and Tricladida show that in respect of the nervous system these taxa form a closely related group. (C) 1997 The Royal Swedish Academy of Sciences. Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The actions of known platyhelminth FaRPs on the contractility of whole-worm preparations of the monogenean, Diclidophora merlangi have been examined in vitro for the first time. All of the peptides tested had excitatory effects on the motor activity of the worm. The order of potency for the peptides tested was: YIRFamide > GYIRFamide = RYIRFamide > GNFFRFamide = FLRFamide. However, although YIRFamide was more potent than GYIRFamide, the latter was the most efficacious on each of the motility parameters (tension, contraction amplitude and contraction frequency) examined at concentrations greater than or equal to 0.1 mu M. Serotonin, which stimulates contractility in the worm was used as a positive control. The excitatory activity of turbellarian and cestode neuropeptides on a monogenean indicates at least some structural similarities in the neuropeptide receptors of these classes of flatworm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cholinergic, serotoninergic and peptidergic neuronal pathways have been demonstrated in whole-mount preparations of the frog-lung digenean trematode, Haematoloechus medioplexus, using enzyme cytochemical methodologies and indirect immunocytochemical techniques in conjunction with confocal scanning laser microscopy. All 3 classes of neuroactive substance mere found throughout both central and peripheral elements of a well-developed orthogonal nervous system, Peptidergic immunoreactivity was particularly strong, using antisera directed to native flatworm neuropeptides, neuropeptide F, and FMRFamide-related peptides (FaRPs), and there was significant overlap in the staining with that for cholinergic components, The serotoninergic system appeared quite separate, with the staining localised to a different set of neurons. (C) 1997 Australian Society for Parasitology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physiological effects of synthetic replicates of the nematode FaRPs, AF1 (KNEFIRFamide), AF2 (KHEYLRFamide), PF1 (SDPNFLRFamide), PF2 (SADPNFLRFamide), AF8/PF3 (KSAYMRFamide) and PF4 (KPNFIRFamide) were examined on muscle preparations of the liver fluke, Fasciola hepatica. Changes in contractility following the addition of the test compound were recorded using a photo-optic transducer system. Unlike the varied effects these peptides have on nematode somatic musculature, all were found to induce excitatory responses in the muscle activity of F. hepatica. While qualitative effects of the nematode peptides were similar in that they induced increases in both the amplitude and frequency of F. hepatica muscle contractions, they varied considerably in the potency of their excitatory effects. The threshold activity for each peptide was as follows: 10 mu M, PF1 and PF2; 3 mu M, AF1 and PF3; 1 mu M, AF2; and 30 nM, PF4. The results demonstrate, for the first time, the cross-phyla activity of nematode neuropeptides on the neuromuscular activity of a trematode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The occurrence of classical neurotransmitter molecules and numerous peptidic messenger molecules in nematode nervous systems indicate that although structurally simple, nematode nervous systems are chemically complex. Thus far, studies on one nematode neuropeptide family, namely the FMRFamide-related peptides (FaRPs), have revealed an unexpected variety of neuropeptide structures in both free-living and parasitic species. To date 23 nematode FaRPs have been structurally characterized including 12 from Ascaris suum, 8 from Caenorhabditis elegans, 5 from Panagrellus redivivus and 1 from Haemonchus contortus. Ten FaRP-encoding genes have been identified in Caenorhabditis elegans. However, the full complement of nematode neuronal messengers has yet to be described and unidentified nematode FaRPs await detection. Preliminary characterization of the actions of nematode neuropeptides on the somatic musculature and neurones of A. suum has revealed that these peptidic messengers have potent and complex effects. Identified complexities include the biphasic effects of KNEFIRFamide/KHEYLRFamide (AF1/2; relaxation of tone followed by oscillatory contractile activity) and KPNFIRFamide (PF4; rapid relaxation of tone followed by an increase in tone), the diverse actions of KSAYMRFamide (AF8 or PF3; relaxes dorsal muscles and contracts ventral muscles) and the apparent coupling of the relaxatory effects of SDPNFLRFamide/SADPNFLRFamide (PF1/PF2) to nitric oxide release. Indeed, all of the nematode FaRPs which have been tested on somatic muscle strips of A. suum have actions which are clearly physiologically distinguishable. Although we are a very long way from understanding how the actions of these peptides are co-ordinated, not only with those of each other but also with those of the classical transmitter molecules, to control nematode behaviour, their abundance coupled with their diversity of structure and function indicates a hitherto unidentified sophistication to nematode neuromuscular intergration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study of Dugesia tigrina the development of the nervous system is followed and compared during regeneration after fission and after decapitation. Immunocytochemistry was used, with antisera raised against the biogenic amine, 5-hydroxytryptamine (5-HT) and the two neuropeptides, neuropeptide F (NPF), and FMRF amide. The results indicate that two processes are involved in the formation of the new cerebral ganglion. First, new processes sprouting from the original main longitudinal nerve cords bend transversely, indicating the position of the developing horseshoe-shaped anterior cerebral commissure. Then new nerve cells in front of the commissure differentiate from neoblasts and their growth cones fasciculate with the fibres from the old main longitudinal nerve cords. In the cerebral ganglion, 5-HT-IR cells appear before NPF-IR cells, in contrast to the pharynx where NPF-IR cells differentiate before the 5-HT-IR cells. In the peripheral nervous system, NPF-IR fibres and cells appear at a very early stage and dominate the whole regeneration process. A role for the PNS in early pattern formation is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of each of the known platyhelminth neuropeptides were determined on muscle-strip preparations from the liver fluke, Fasciola hepatica. The activity of synthetic replicates of the C-terminal nonapeptide of neuropeptide F (NPF9, Moniezia expansa), and the FMRFamide-related peptides (FaRPs), GNFFRFamide, RYIRFamide, GYIRFamide and YIRFamide, were examined. Muscle-strip activity was recorded from 1 mm segments of muscle prepared from 28 to 32-day-old worms, using a photo-optic transducer system. None of the peptides (less than or equal to 10 mu M) altered baseline tension significantly; however, each of the peptides increased the amplitude and frequency of muscle contraction. The threshold for activity of each of the peptides examined was, respectively, 1 nM (RYIRFamide), 0.3 mu M (GYIRFamide and YIRFamide), and 10 mu M (GNFFRFamide and NPF9). All of the effects were reversible and repeatable, following wash-out. Muscle-strip integrity was tested following experimentation, using arecoline (10 mu M) and high-K+ bathing medium (90 mM K+).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FMRFamide-related peptides (FaRPs) are the largest known family of invertebrate neuropeptides. Immunocytochemical screens of nematode tissues using antisera raised to these peptides have localized extensive FaRP-immunostaining to their nervous systems. Although 21 FaRPs have been isolated and sequenced from extracts of free-living and parasitic nematodes, available evidence indicates that other FaRPs await discovery. While our knowledge of the pharmacology of these native nematode neuropeptides is extremely limited, reports on their physiological activity in nematodes are ever increasing. All the nematode FaRPs examined so far have been found to have potent and varied actions on nematode neuromuscular activity. It is only through the extensive pharmacological and physiological assessment of the tissue, cell and receptor interactions of these peptidic messengers that an understanding of their activity on nematode neuromusculature will be possible. In this review, Aaron Maule and colleagues examine the current understanding of the pharmacology of nematode FaRPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the past decade it has become clear that the nervous systems of platyhelminths are both complex and highly developed, particularly in peptidergic elements. The central position of an ancestral flatworm in the evolution of the Bilateria has placed a greater importance on the study of modern flatworms. Using antisera generated to the C-terminal region of platyhelminth neuropeptide F and the molluscan neuropeptide, FMRFamide, in immunocytochemistry at both Light and ultrastructural levels, immunoreactivities have been localised within the nervous systems of three species of triclad turbellarians, Dugesia lugubris, Dendrocoelum lacteum, and Polycelis nigra, and one species of monogenean trematode, Diclidophora merlangi. Extensive immunostaining was obtained with both antisera throughout the central and peripheral nervous systems of all species studied, but intensity and abundance was significantly greater in the turbellarians. Indirect electron-immunogold labeling demonstrated that immunoreactivity to both neuropeptides was often colocalised in neurosecretory vesicles, although discrete populations of vesicles were also observed. Radioimmunoassay of extracts of all species confirmed that neuropeptide F immunoreactivity was consistently more abundant than FMRFamide immunoreactivity, and that the levels of both in the three turbellarians were several orders of magnitude greater than those found in the monogenean. Chromatographic analyses of turbellarian extracts revealed that neuropeptide F and FMRFamide immunoreactivities were attributable to different peptides. These data imply that the neuropeptidergic systems of turbellarians are considerably more extensive than those of monogeneans, and would suggest that a regression has occurred in the latter as a consequence of the adoption of a more sedentary parasitic lifestyle. (C) 1995 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immunochemical techniques were used to determine the distribution, chemical characteristics and relative abundance of immunoreactivity (IR) to two native platyhelminth neuropeptides, neuropeptide F (NPF) (Moniezia expansa) and the FMRFamide-related peptide (FaRP), GNFFRFamide, in the trematodes, Fasciola hepatica and Schistosoma mansoni; the larger S. margrebowiei was used in the chemical analysis. Extensive immunostaining for the two peptides was demonstrated throughout the nervous systems of both F. hepatica and S. mansoni, with strong IR also in the innervation of muscular structures, including those associated with the egg-forming apparatus. The patterns of immunostaining were similar to those previously described for the vertebrate neuropeptide Y superfamily of peptides and for FMRFamide. Ultrastructurally, gold labelling of NPF- and GNFFRFamide-IRs was localized exclusively to the contents of secretory vesicles in the axons and somatic cytoplasm of neurones. Double-labelling experiments showed an apparent homogeneity of antigenic sites, in all probability due to the demonstrated cross-reactivity of the FaRP antiserum with NPF. Radioimmunoassay of acid-ethanol extracts of the worms detected 8.3 pmol/g and 4.7 pmol/g equivalents of NPF- and FMRFamide-IRs, respectively, for F. hepatica, and corresponding values of 4.9 pmol/g and 4.3 pmol/g equivalents for S. margrebowiei. Gel-permeation chromatography resolved IR to both peptides in discrete peaks and these eluted in similar positions to synthetic NPF (M. expansa) and GNFFRFamide, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nervous systems of helminths are predominantly peptidergic in nature, although it is likely that the full range of regulatory peptides used by these organisms has yet to be elucidated. Attempts to identify novel helminth neuropeptides are being made using immunocytochemistry with antisera raised against peptides isolated originally from insects. One of these antisera was raised against allatostatin III, a peptide isolated originally from the cockroach, Diploptera punctata, and a member of a family of related peptides found in insects. Allatostatin immunoreactivity was found throughout the nervous systems of Mesocestoides corti tetrathyridia, and adult Moniezia expansa, Diclidophora merlangi, Fasciola hepatica, Schistosoma mansoni, Ascaris suum and Panagrellus redivivus. Immunostaining was observed in the nerve cords and anterior ganglia of all the helminths. It was also apparent in the subtegumental nerves and around the reproductive apparatus of the flatworms, in neurones in the pharynx of D. merlangi, F. hepatica, A. suum and P. redivivus, and in fibres innervating the anterior sense organs in the nematodes. Immunostaining in all species was both reproducible and specific in that it could be abolished by pre-absorption of the antiserum with allatostatins I-IV. These results suggest that molecules related to the D. punctata allatostatins are important components in the nervous systems of a number of helminth parasites, and a free-living nematode. Their distribution within the nervous system suggests they function as neurotransmitters/ neuromodulators with roles in locomotion, feeding, reproduction and sensory perception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indirect immunocytochemistry, in conjunction with confocal scanning laser microscopy and electron-microscopic immunogold labeling, has been used to localize neuropeptide and 5-hydroxytryptamine (5-HT) immunereactivities (IRs) in the plerocercoid (scolex and surrounding blastocyst) of the trypanorhynch tapeworm, Grillotia erinaceus. Antisera directed to two native cestode neuropeptides, neuropeptide F and the FMRFamide-related peptide, GNFFRFamide, were used to demonstrate the presence of a well-developed and extensive peptide-immunoreactive nervous system of central and peripheral elements in the juvenile scolex. Neuronal connectivity exists between the scolex and the surrounding blastocyst, in which there is a rich innervation of varicose fibers displaying peptide IR. Ultrastructurally, gold labeling of the peptide IR was found exclusively over the contents of dense secretory vesicles in the axons and somatic cytoplasm of neurons. Double-labeling experiments demonstrated an apparent colocalization of peptide IR, although the results of antigen preadsorption procedures indicated substantial cross-reactivity of the two antisera. A separate and well-differentiated 5-HT-immunoreactive nervous system, with a similar anatomical arrangement as the peptide-immunoreactive nervous system, is present in both the scolex and blastocyst (C) 1994 Academic Press, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Available primary structural information suggests that the FMRFamide-related peptides (FaRPs) from parasitic and free-living nematodes are different, and that free-living forms may not represent appropriate models for the study of the neurochemistry of parasitic forms in the laboratory. However, here we report the isolation and unequivocal identification of AF2 (originally isolated from the parasite, Ascaris suum) from acidified alcoholic extracts of the free-living species, Panagrellus redivivus. While reverse-phase HPLC analysis of extracts revealed FMRFamide-immunoreactivity to be highly heterogeneous, AF2 was the predominant FMRFamide-immunoreactive peptide present (at least 26 pmol/g wet weight of worms). This peptide was also the major immunoreactant identified by an antiserum raised to the conserved C-terminal hexapeptide amide of mammalian pancreatic polypeptide (PP), which has been used previously to isolate neuropeptide F (NPF). These observations were confirmed by radioimmunoassay and chromatographic fractionation of an acidified alcoholic extract of A. suum heads. The FMRFamide-related peptides present in a nematode extract may be highly dependent on the extraction medium employed, and these data would suggest that this complement of neuropeptides may not be as different between parasitic and free-living nematodes as initial studies have suggested. Finally, all of the evidence suggests that NPF is not present in nematodes and that the PP-immunoreactant previously demonstrated immunochemically is probably AF2.