979 resultados para NEURAL-TUBE DEFECTS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

hlx1 is a related homeobox gene expressed in a dynamic spatiotemporal expression pattern during development of the zebrafish brain. The homologues of hlx1, mouse dbx1 and Xenopus Xdbx, are known to play a role in the specification of neurons in the spinal cord. However, the role of these molecules in the brain is less well known. We have used two different approaches to elucidate a putative function for hlx1 in the developing zebrafish brain. Blastomeres were injected with either synthetic hlx1 mRNA in gain-of-function experiments or with antisense morpholino oligonucleotides directed against hlx1 in loss-of-function experiments. Mis-expression of hlx1 produced severe defects in brain morphogenesis as a result of abnormal ventricle formation, a phenotype we referred to as fused-brain. These animals also showed a reduction in the size of forebrain neuronal clusters as well as abnormal axon pathfinding. hlx1 antisense morpholinos specifically perturbed hindbrain morphogenesis leading to defects in the integrity of the neuroepithelium. While hindbrain patterning was in the most part unaffected there were select disruptions to the expression pattern of the neurogenic gene Zash1B in specific rhombomeres. Our results indicate multiple roles for hlx1 during zebrafish brain morphogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Résumé La dérégulation de c-Myc est un événement fréquent de la transformation cellulaire. Une régulation positive de cette oncoprotéine a été démontrée dans divers mélanomes cutanés primaires et métastatiques et est associée à un pronostic défavorable (Grover et al., 1996; Zhuang et al., 2008). c-Myc est considéré comme une molécule centrale impliquée dans plusieurs processus de l'homéostasie cellulaire. En raison de sa contribution importante dans la progression tumorale, la fonction de c-Myc a été étudiée intensément. Cependant nous connaissons peu le rôle de ce facteur de transcription dans l'embryogenèse et dans la spécification tissulaire. Un déficit total de c-Myc pendant l'embryogenèse conduit à la mort embryonnaire avant 10.5 jours de gestation. Cette mort est causée par de multiples imperfections du développement touchant la taille de l'embryon, le coeur, le péricarde, le tube neural et les cellules sanguines (Davis et al., 1993; Trumpp et al., 2001). Récemment, il a été montré que la plupart de ces anomalies sont secondaires et résultent d'une insuffisance du placenta dans les embryons c-myc-/- (Dubois et al., 2008). Sachant que c-Myc est important dans la maintenance des lignées de la crête neurale (Wei et al., 2007), nous nous sommes intéressés au rôle de c-Myc dans le développement des cellules pigmentaires et à leur homéostasie après la naissance. Un allèle floxé de c-myc (Trumpp et al., 2001) a été utilisé pour supprimer ce gène spécifiquement dans la lignée mélanocytaire à l'aide d'une souris transgénique Tyr::Cre (Delmas et al., 2003). L'ablation des deux allèles de c-myc dans les mélanocytes des souris c-myccKO conduit au phénotype de grisonnement des poils, observé directement après la naissance et associé à une diminution du nombre de mélanocytes dans le bulbe des follicules pileux. Les cellules pigmentaires restantes expriment les marqueurs mélanogéniques (Tyr, TRP-1, Dct and MITF) et semblent être fonctionnelles puisqu'elles peuvent produire et transférer la mélanine. De plus, la capacité de prolifération des mélanocytes déficients en c-Myc dans le bulbe des follicules pileux ne semble pas être affectée chez les nouveaux-nés. Les cellules souches mélanocytaires sont présentes, mais en nombre réduit, dans le bulge des follicules pileux à la fin de la morphogenèse chez les souris c-myccKO âgées de huit jours. Ces cellules sont maintenues sans changement durant le premier cycle pileux (vérifié à l'âge de trente jours), ce qui sous-entend que la fonction de c-Myc n'est pas nécessaire pour ce processus. Ceci explique pourquoi, en supposant que des cellules souches mélanocytaires fonctionnelles sont présentes dans la peau, nous n'observons pas de dilution de couleur de la robe liée à l'âge. Cependant, la présence de ces cellules souches mélanocytaires dans la peau c-myccKO ne suffit pas à assurer une quantité normale de mélanocytes différenciés dans le bulbe des follicules pileux. Cette population de cellules pigmentaires matures est sévèrement affectée par la suppression de c-Myc, ce qui contribue amplement au phénotype de grisonnement des poils. De plus, c-Myc paraît être important pour le développement des mélanocytes. Ainsi, le nombre de mélanoblastes diminue dans les embryons c-myccKO à partir du douzième jour de gestation. A treize jours de gestation, au stade où les mélanoblastes pénètrent dans l'épiderme et prolifèrent, les mélanoblastes déficients en c-Myc ne s'adaptent pas aux signaux de prolifération et se retrouvent en nombre réduit dans l'épiderme. Finalement, nous nous sommes intéressés, au rôle de N-Myc, un homologue proche de c-Myc, dans la lignée mélanocytaire. Nos expériences ont montré que. N-Myc était superflu pour le développement et l'homéostasie des mélanocytes, une seule copie du gène c-myc étant suffisante pour maintenir une pigmentation normale de la robe des souris c-mycc-myccKO/+~N_ myccKO/KO. Cependant, le rôle essentiel de N-Myc dans la maintenance des cellules mélanocytaires précurseurs apparaît lorsque c-Myc est absent, puisque la suppression simultanée des deux Myc résulte en une perte complète de la coloration de la robe. Ceci implique la présence d'un mécanisme compensatoire entre c- et N-Myc dans la lignée mélanocytaire, avec un rôle prédominant de c-Myc. Summary Deregulation of c-Myc is known to be a common event in cellular transformation. Upregulation of this oncoprotein was shown in a variety of primary and metastatic cutaneous melanomas and has been associated with a poor prognosis (Grover et al., 1996; Zhuang et al., 2008). c-myc is seen as a central molecule involved in many aspects of cellular homeostasis. c-Myc function has been intensively studied mostly because of its significant contribution to tumour progression. However little is known on the role of this transcription factor in embryogenesis and tissue specification. Complete loss of c-Myc during embryogenesis results in embryonic death before E10.5 due to multiple developmental defects including embryonic size, heart, pericardium, neural tube and blood cells (Davis et al., 1993; Trumpp et al., 2001). Recently it was discovered that most of these abnormalities are secondary and results of placental insufficiency in c-Myc-/- embryos (Dubois et al., 2008). Here, we focused on the role of c-Myc in pigment cell development and homeostasis after birth, knowing that c-Myc is important in the maintenance of neural crest lineages (Wei et al., 2007). A floxed allele of c-Myc (Trumpp et al., 2001) was used to specifically delete this gene in the melanocyte lineage using Tyr::Cre transgenic mice (Delmas et al., 2003). Removal of both c-Myc alleles in melanocytes of c-MyccKO mouse led to the grey hair phenotype which is seen directly after birth and was associated with a decrease in the melanocyte number in the bulb of the hair follicle. The remaining population of pigment cells express melanogenic markers (Tyr, TRP-1, Dct and MITF) and seem functionally normal since they can produce and transfer melanin. Furthermore proliferation capacity of c-Myc deficient melanocytes in the bulb of hair follicle seems not to be affected in newborn animals. Melanocyte stem cells (MSCs) are present but reduced in numbers in the bulge of the hair follicle at the end of morphogenesis in 8 days old c-MyccKO mice. These cells are maintained through the first hair cycle (as verified at P30) without any further changes, suggesting that c-Myc function is not required for this process. This explains why we did not detect any agerelated coat color dilution, assuming a presence of functional MSCs in the skin. Importantly, presence of MSCs in c-MyccKO skin was not sufficient for assuring a normal number of differentiated melanocytes in the bulb of the hair follicle. This population of mature pigmented cells is severely affected upon c-myc deletion thus largely contributing to the grey hair phenotype. Moreover, c-Myc appears to be important for melanocyte development. Thus, melanoblast number is affected in c-MyccKO embryos day 12 of gestation onwards. At E13.5, when melanoblasts enter the epidermis and proliferate, c-myc deficient melanoblasts failed to adapt to proliferation signals and are therefore reduced in number in the epidermis. Finally, we addressed the role of N-Myc, a closest homologue of c-Myc, in the melanocyte lineage. In these experiments, N-Myc was dispensable for melanocyte development and homeostasis, and even one copy of the c-myc gene was sufficient to maintain normal coat color pigmentation in c-mycc-mycCKO/+ ,N-myccKO/KO mice. However the crucial role of N-Myc in maintenance of melanocyte precursor cells became apparent when c-myc is eliminated since simultaneous deletion of both Myc results in complete loss of coat color pigmentation. This suggests compensatory mechanisms between c- and N-Myc with a predominant role of c-Myc in melanocyte lineage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Jeune asphyxiating thoracic dystrophy (JATD) is a skeletal dysplasia characterized by a small thoracic cage and a range of skeletal and extra-skeletal anomalies. JATD is genetically heterogeneous with at least nine genes identified, all encoding ciliary proteins, hence the classification of JATD as a skeletal ciliopathy. Consistent with the observation that the heterogeneous molecular basis of JATD has not been fully determined yet, we have identified two consanguineous Saudi families segregating JATD who share a single identical ancestral homozygous haplotype among the affected members. Whole-exome sequencing revealed a single novel variant within the disease haplotype in CEP120, which encodes a core centriolar protein. Subsequent targeted sequencing of CEP120 in Saudi and European JATD cohorts identified two additional families with the same missense mutation. Combining the four families in linkage analysis confirmed a significant genome-wide linkage signal at the CEP120 locus. This missense change alters a highly conserved amino acid within CEP120 (p.Ala199Pro). In addition, we show marked reduction of cilia and abnormal number of centrioles in fibroblasts from one affected individual. Inhibition of the CEP120 ortholog in zebrafish produced pleiotropic phenotypes characteristic of cilia defects including abnormal body curvature, hydrocephalus, otolith defects and abnormal renal, head and craniofacial development. We also demonstrate that in CEP120 morphants, cilia are shortened in the neural tube and disorganized in the pronephros. These results are consistent with aberrant CEP120 being implicated in the pathogenesis of JATD and expand the role of centriolar proteins in skeletal ciliopathies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Wnt family of secreted signalling molecules controls a wide range of developmental processes in all metazoans. In this investigation we concentrate on the role that members of this family play during the development of (1) the somites and (2) the neural crest. (3) We also isolate a novel component of the Wnt signalling pathway called Naked cuticle and investigate the role that this protein may play in both of the previously mentioned developmental processes. (1) In higher vertebrates the paraxial mesoderm undergoes a mesenchymal-to-epithelial transformation to form segmentally organised structures called somites. Experiments have shown that signals originating from the ectoderm overlying the somites or from midline structures are required for the formation of the somites, but their identity has yet to be determined. Wnt6 is a good candidate as a somite epithelialisation factor from the ectoderm since it is expressed in this tissue. In this study we show that injection of Wnt6-producing cells beneath the ectoderm at the level of the segmental plate or lateral to the segmental plate leads to the formation of numerous small epithelial somites. We show that Wnts are indeed responsible for the epithelialisation of somites by applying Wnt antagonists which result in the segmental plate being unable to form somites. These results show that Wnt6, the only member of this family to be localised to the chick paraxial ectoderm, is able to regulate the development of epithelial somites and that cellular organisation is pivotal in the execution of the differentiation programmes. (2) The neural crest is a population of multipotent progenitor cells that arise from the neural ectoderm in all vertebrate embryos and form a multitude of derivatives including the peripheral sensory neurons, the enteric nervous system, Schwann cells, pigment cells and parts of the craniofacial skeleton. The induction of the neural crest relies on an ectodermally derived signal, but the identity of the molecule performing this role in amniotes is not known. Here we show that Wnt6, a protein expressed in the ectoderm, induces neural crest production. (3) The intracellular response to Wnt signalling depends on the choice of signalling cascade activated in the responding cell. Cells can activate either the canonical pathway that modulates gene expression to control cellular differentiation and proliferation, or the non-canonical pathway that controls cell polarity and movement (Pandur et al. 2002b). Recent work has identified the protein Naked cuticle as an intracellular switch promoting the non-canonical pathway at the expense of the canonical pathway. We have cloned chick Naked cuticle-1 (cNkd1) and demonstrate that it is expressed in a dynamic manner during early embryogenesis. We show that it is expressed in the somites and in particular regions where cells are undergoing movement. Lastly our study shows that the expression of cNkd1 is regulated by Wnt expression originating from the neural tube. This study provides evidence that non-canonical Wnt signalling plays a part in somite development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The vertebrate Zic gene family encodes C2H2 zinc finger transcription factors closely related to the Gli proteins. Zic genes are expressed in multiple areas of developing vertebrate embryos, including the dorsal neural tube where they act as potent neural crest inducers. Here we describe the characterization of a Zic ortholog from the amphioxus Branchiostoma floridae and further describe the expression of a Zic ortholog from the ascidian Ciona intestinalis. Molecular phylogenetic analysis and sequence comparisons suggest the gene duplications that formed the vertebrate Zic family were specific to the vertebrate lineage. In Ciona maternal CiZic/Ci-macho1 transcripts are localized during cleavage stages by asymmetric cell division, whereas zygotic expression by neural plate cells commences during neurulation. The amphioxus Zic ortholog AmphiZic is expressed in dorsal mesoderm and ectoderm during gastrulation, before being eliminated first from midline cells and then from all neurectoderm during neurulation. After neurulation, expression is reactivated in the dorsal neural tube and dorsolateral somite. Comparison of CiZic and AmphiZic expression with vertebrate Zic expression leads to two main conclusions. First, Zic expression allows us to define homologous compartments between vertebrate and amphioxus somites, showing primitive subdivision of vertebrate segmented mesoderm. Second, we show that neural Zic expression is a chordate synapomorphy, whereas the precise pattern of neural expression has evolved differently on the different chordate lineages. Based on these observations we suggest that a change in Zic regulation, specifically the evolution of a dorsal neural expression domain in vertebrate neurulae, was an important step in the evolution of the neural crest.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

During the process of development, neural crest cells migrate out from their niche between the newly formed ectoderm and the neural tube. Thereafter, they give rise not only to ectodermal cell types, but also to mesodermal cell types. Cell types with neural crest ancestry consequently comprise a number of specialized varieties, such as ectodermal neurons, melanocytes and Schwann cells, as well as mesodermal osteoblasts, adipocytes and smooth muscle cells. Numerous recent studies suggest that stem cells with a neural crest origin persist into adulthood, especially within the mammalian craniofacial compartment. This review discusses the sources of adult neural crest-derived stem cells (NCSCs) derived from the cranium, as well as their differentiation potential and expression of key stem cell markers. Furthermore, the expression of marker genes associated with embryonic stem cells and the issue of multi- versus pluripotency of adult NCSCs is reviewed. Stringent tests are proposed, which, if performed, are anticipated to clarify the issue of adult NCSC potency. Finally, current pre-clinical and clinical data are discussed in light of the clinical impact of adult NCSCs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Oral clefts are one of the most common birth defects with significant medical, psychosocial, and economic ramifications. Oral clefts have a complex etiology with genetic and environmental risk factors. There are suggestive results for decreased risks of cleft occurrence and recurrence with folic acid supplements taken at preconception and during pregnancy with a stronger evidence for higher than lower doses in preventing recurrence. Yet previous studies have suffered from considerable design limitations particularly non-randomization into treatment. There is also well-documented effectiveness for folic acid in preventing neural tube defect occurrence at 0.4 mg and recurrence with 4 mg. Given the substantial burden of clefting on the individual and the family and the supportive data for the effectiveness of folic acid supplementation as well as its low cost, a randomized clinical trial of the effectiveness of high versus low dose folic acid for prevention of cleft recurrence is warranted.Methods/design: This study will assess the effect of 4 mg and 0.4 mg doses of folic acid, taken on a daily basis during preconception and up to 3 months of pregnancy by women who are at risk of having a child with nonsyndromic cleft lip with/without palate (NSCL/P), on the recurrence of NSCL/P. The total sample will include about 6,000 women (that either have NSCL/P or that have at least one child with NSCL/P) randomly assigned to the 4 mg and the 0.4 mg folic acid study groups. The study will also compare the recurrence rates of NSCL/P in the total sample of subjects, as well as the two study groups (4mg, 0.4 mg) to that of a historical control group. The study has been approved by IRBs (ethics committees) of all involved sites. Results will be disseminated through publications and presentations at scientific meetings.Discussion: The costs related to oral clefts are high, including long term psychological and socio-economic effects. This study provides an opportunity for huge savings in not only money but the overall quality of life. This may help establish more specific clinical guidelines for oral cleft prevention so that the intervention can be better tailored for at-risk women.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background Oral clefts are one of the most common birth defects with significant medical, psychosocial, and economic ramifications. Oral clefts have a complex etiology with genetic and environmental risk factors. There are suggestive results for decreased risks of cleft occurrence and recurrence with folic acid supplements taken at preconception and during pregnancy with a stronger evidence for higher than lower doses in preventing recurrence. Yet previous studies have suffered from considerable design limitations particularly non-randomization into treatment. There is also well-documented effectiveness for folic acid in preventing neural tube defect occurrence at 0.4 mg and recurrence with 4 mg. Given the substantial burden of clefting on the individual and the family and the supportive data for the effectiveness of folic acid supplementation as well as its low cost, a randomized clinical trial of the effectiveness of high versus low dose folic acid for prevention of cleft recurrence is warranted. Methods/design This study will assess the effect of 4 mg and 0.4 mg doses of folic acid, taken on a daily basis during preconception and up to 3 months of pregnancy by women who are at risk of having a child with nonsyndromic cleft lip with/without palate (NSCL/P), on the recurrence of NSCL/P. The total sample will include about 6,000 women (that either have NSCL/P or that have at least one child with NSCL/P) randomly assigned to the 4 mg and the 0.4 mg folic acid study groups. The study will also compare the recurrence rates of NSCL/P in the total sample of subjects, as well as the two study groups (4mg, 0.4 mg) to that of a historical control group. The study has been approved by IRBs (ethics committees) of all involved sites. Results will be disseminated through publications and presentations at scientific meetings. Discussion The costs related to oral clefts are high, including long term psychological and socio-economic effects. This study provides an opportunity for huge savings in not only money but the overall quality of life. This may help establish more specific clinical guidelines for oral cleft prevention so that the intervention can be better tailored for at-risk women. ClinicalTrials.gov Identifier NCT00397917

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fundamental task in developmental biology is to understand the molecular mechanisms governing early embryogenesis. The aim of this study was to understand the developmental role of a putative basic helix-loop-helix (b-HLH) transcription factor, twist, during mouse embryogenesis.^ twist was originally identified in Drosophila as one of the zygotic genes, including snail, that were required for dorsal-ventral patterning. In Drosophila embryogenesis, twist is expressed in the cells of the ventral midline destined to form mesoderm. In embryos lacking twist expression, their ventral cells fail to form a ventral furrow and subsequently no mesoderm is formed.^ During mouse embryogenesis, twist is expressed after initial mesoderm formation in both mesoderm and cranial neural crest cell derivatives. To study the role of twist in vivo, twist-null embryos were generated by gene targeting. Embryos homozygous for the twist mutation die at midgestation. The most prominent phenotype in the present study was a failure of the cranial neural tube to close (exencephaly). twist-null embryos also showed defects in head mesenchyme, branchial arches, somites, and limb buds.^ To understand whether twist functions cell-autonomously and to investigate how twist-null cells interact with wild-type cells in vivo, twist chimeras composed of both twist-null and wild-type cells marked by the expression of the lacZgene were generated. Chimeric analysis revealed a correlation between the incidence of exencephaly and the contribution of the underlying twist-null head mesenchyme, thus strongly suggesting that twist-expressing head mesenchyme is required for the closure of the cranial neural tube. These studies have identified twist as a critical regulator for the mesenchymal fate determination within the cranial neural crest lineage. Most strikingly, twist-null head mesenchyme cells were always segregated from wild-type cells, indicating that the twist mutation altered the adhesive specificity of these cells. Furthermore, these results also indicated that twist functions cell-autonomously in the head, arch, and limb mesenchyme but non-cell-autonomously in the somites. Taken together, these studies have established the essential role of twist during mouse embryogenesis. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The genetic pathways that control development of the early mammalian embryo have remained poorly understood, in part because the systematic mutant screens that have been so successful in the identification of genes and pathways that direct embryonic development in Drosophila, Caenorhabditis elegans, and zebrafish have not been applied to mammalian embryogenesis. Here we demonstrate that chemical mutagenesis with ethylnitrosourea can be combined with the resources of mouse genomics to identify new genes that are essential for mammalian embryogenesis. A pilot screen for abnormal morphological phenotypes of midgestation embryos identified five mutant lines; the phenotypes of four of the lines are caused by recessive traits that map to single regions of the genome. Three mutant lines display defects in neural tube closure: one is caused by an allele of the open brain (opb) locus, one defines a previously unknown locus, and one has a complex genetic basis. Two mutations produce novel early phenotypes and map to regions of the genome not previously implicated in embryonic patterning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neural crest cells arise from the ectoderm and are first recognizable as discrete cells in the chicken embryo when they emerge from the neural tube. Despite the classical view that neural crest precursors are a distinct population lying between epidermis and neuroepithelium, our results demonstrate that they are not a segregated population. Cell lineage analyses have demonstrated that individual precursor cells within the neural folds can give rise to epidermal, neural crest, and neural tube derivatives. Interactions between the neural plate and epidermis can generate neural crest cells, since juxtaposition of these tissues at early stages results in the formation of neural crest cells at the interface. Inductive interactions between the epidermis and neural plate can also result in "dorsalization" of the neural plate, as assayed by the expression of the Wnt transcripts characteristic of the dorsal neural tube. The competence of the neural plate changes with time, however, such that interaction of early neural plate with epidermis generates only neural crest cells, whereas interaction of slightly older neural plate with epidermis generates neural crest cells and Wnt-expressing cells. At cranial levels, neuroepithelial cells can regulate to generate neural crest cells when the endogenous neural folds are removed, probably via interaction of the remaining neural tube with the epidermis. Taken together, these experiments demonstrate that: (i) progenitor cells in the neural folds are multipotent, having the ability to form multiple ectodermal derivatives, including epidermal, neural crest, and neural tube cells; (ii) the neural crest is an induced population that arises by interactions between the neural plate and the epidermis; and (iii) the competence of the neural plate to respond to inductive interactions changes as a function of embryonic age.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Factors that regulate cellular migration during embryonic development are essential for tissue and organ morphogenesis. Scatter factor/hepatocyte growth factor (SF/HGF) can stimulate motogenic and morphogenetic activities in cultured epithelial cells expressing the Met tyrosine kinase receptor and is essential for development; however, the precise physiological role of SF/HGF is incompletely understood. Here we provide functional evidence that inappropriate expression of SF/HGF in transgenic mice influences the development of two distinct migratory cell lineages, resulting in ectopic skeletal muscle formation and melanosis in the central nervous system, and patterned hyperpigmentation of the skin. Committed TRP-2 positive melanoblasts were found to be situated aberrantly within defined regions of the transgenic embryo, including the neural tube, which overproduced SF/RGF. Our data strongly suggest that SF/HGF possesses physiologically relevant scatter activity, and functions as a true morphogenetic factor by regulating migration and/or differentiation of select populations of premyogenic and neural crest cells during normal mammalian embryogenesis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The early axon scaffolding in the embryonic vertebrate brain consists of a series of ventrally projecting axon tracts that grow into a single major longitudinal pathway connected across the midline by commissures. We have investigated the role of Brother of CDO (BOC), an immunoglobulin (Ig) superfamily member distantly related to the Roundabout (Robo) family of axon-guidance receptors, in the development of this embryonic template of axon tracts in the zebrafish brain. A zebrafish homologue of BOC was isolated and shown to be expressed predominantly in the developing neural plate and later in the neural tube and developing brain. Zebrafish boc was initially highly localized to discrete bands in the mid- and hindbrain, but, as the major brain subdivisions emerged, it became more evenly expressed along the rostrocaudal axis, particularly in dorsal regions. The function of zebrafish boc was examined by a loss-of-function approach. Analysis of embryos injected with antisense morpholinos designed against boc revealed highly selective defects in the development of dorsoventrally projecting axon tracts. Loss of boc caused ventrally projecting axons, particularly those arising from the presumptive telencephalon, to follow aberrant trajectories. These data indicate that boc is an axon-guidance molecule playing a fundamental role in pathfinding during the early patterning of the axon scaffold in the embryonic vertebrate brain. (c) 2005 Wiley-Liss, Inc.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neural Crest cells (NCC) constitute a unique embryonic cell population that arises between the prospective epidermis and the dorsal aspect of the neural tube of vertebrates. NCC migrate ventromedially and dorsolaterally throughout the developing embryo giving rise to the peripheral nervous system constituents and melanocytes that ultimately reside in the skin and hair follicles respectively. Mice and humans with mutations in the Endothelin receptor b (Ednrb) gene manifest strikingly similar phenotypes characterized by hypopigmentation, hearing loss and megacolon these are due to absence of melanocytes in the skin and inner ear and lack of enteric ganglia in the distal part of the gut, respectively. Piebald lethal mice and humans with Hirschsprung's disease or Waardenburg syndrome carry different mutations in the Ednrb gene. The major goals of this project were to determine whether the action of Ednrb in NCC is required prior to commitment of these cells to the melanocytic lineage and to investigate its potential participation in the actual process of commitment. In order to achieve these goals transgenic mice that express Ednrb under two different regulatory elements were created. The first, Dct-Ednrb, expresses Ednrb under the control of the DOPAchrome tautomerase (Dct) promoter to direct expression to already committed melanocyte precursors. The second, Nes-Ednrb, expresses Ednrb under the regulation of the human nestin gene second enhancer to direct expression to pre-migratory NCC. Crosses of the Dct-Ednrb mouse with piebald lethal showed that the transgene was capable of rescuing the hypopigmentation phenotype of the later. This result indicates that the action of Ednrb after NCC commit to the melanocytic lineage is sufficient for normal melanocyte development. The Dct-Ednrb was further crossed with two other hypopigmentation mutants that carry mutations in the transcription factors Sox10 and Pax3. The transgene rescued the phenotype of the Sox10 mutant only. This suggests that Ednrb interacts with Sox10 but not with Pax3 during melanocyte development. The Nes-Ednrb mice developed a hypopigmentation phenotype that was augmented when crossed with piebald lethal or lethal spotting (mutation in Edn3, the ligand for Ednrb) mice but was rescued by over expression of Edn3. These results suggest that alterations in Ednrb expression early in development affect melanocyte development. This study provides novel information necessary to better understand the early embryonic development of NCC, clarifies specific interactions between different melanogenic genes and, could eventually help in the implementation of therapies for human pigmentary genetic disorders. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endothelin-3 (Edn3) has been shown to be an essential environmental cue in melanocyte development. Edn3 and its receptor, EdnrB, are allelic to mouse mutations occurring at the lethal spotting and piebald loci, respectively; these mutations result in hypopigmentation phenotypes. Mutations in the genes for both Edn3 and EdnrB are implicated in human pigmentation disorders such as Waardenburg-Shah syndrome, which is characterized by pigmentation defects, deafness, and megacolon. In this study, a tetracycline-inducible transgenic mouse model that overexpresses Edn3 under the control of the Keratin 5 promoter was shown to produce a hyperpigmentation phenotype that decreases over time. The expression pattern of transgenic Edn3 and its effects on the melanocyte population were examined in transgenic embryos, postnatal skin, and the skin of adult mice that exhibit faded hyperpigmentation. These studies suggest that overexpression of Edn3 in this model is restricted primarily to the roof plate of the neural tube and surface ectoderm in the developing embryo and to keratinocytes in the epidermis of postnatal mice. A decline in transgenic expression and a reduction in the dermal melanocytes and free melanin that characterize the phenotype in juvenile mice were shown to correlate with the fading of the hyperpigmentation phenotype. Transgenic mice in which transgenic expression was repressed (resulting in the disappearance of the hyperpigmentation phenotype) also exhibited a decrease in the dermal melanocyte population. The Edn3-overexpressing mice used in this study might be helpful m understanding human skin conditions characterized by dermal melanocytosis.