951 resultados para NETWORK DYNAMICS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Modeling network traffic has been a critical task in the development of Internet. Attacks and defense are prevalent in the current Internet. Traditional network models such as Poisson-related models do not consider the competition behaviors between the attack and defense parties. In this paper, we present a microscopic competition model to analyze the dynamics among the nodes, benign or malicious, connected to a router, which compete for the bandwidth. The dynamics analysis demonstrates that the model can well describe the competition behavior among normal users and attackers. Based on this model, an anomaly attack detection method is presented. The method is based on the adaptive resonance theory, which is used to learn the model by normal traffic data. The evaluation shows that it can effectively detect the network attacks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Social network worms, such as email worms and facebook worms, pose a critical security threat to the Internet. Modeling their propagation dynamics is essential to predict their potential damages and develop countermeasures. Although several analytical models have been proposed for modeling propagation dynamics of social network worms, there are two critical problems unsolved: temporal dynamics and spatial dependence. First, previous models have not taken into account the different time periods of Internet users checking emails or social messages, namely, temporal dynamics. Second, the problem of spatial dependence results from the improper assumption that the states of neighboring nodes are independent. These two problems seriously affect the accuracy of the previous analytical models. To address these two problems, we propose a novel analytical model. This model implements a spatial-temporal synchronization process, which is able to capture the temporal dynamics. Additionally, we find the essence of spatial dependence is the spreading cycles. By eliminating the effect of these cycles, our model overcomes the computational challenge of spatial dependence and provides a stronger approximation to the propagation dynamics. To evaluate our susceptible-infectious-immunized (SII) model, we conduct both theoretical analysis and extensive simulations. Compared with previous epidemic models and the spatial-temporal model, the experimental results show our SII model achieves a greater accuracy. We also compare our model with the susceptible-infectious-susceptible and susceptible-infectious- recovered models. The results show that our model is more suitable for modeling the propagation of social network worms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The lack of women in leadership positions remains a persistent social phenomenon. The aim of the paper is to investigate how networking is connected to leadership aspirations and examine women’s understanding and practice of networking as a career developmental skill.

Theoretical explanations around women’s lack of leadership has focused on women’s organisational constraints, their outsider status and the conditions of women within the broader community; however, what is mostly absent from research is how women’s relationships with each other influence opportunities for leadership. Women often experience the ‘glass ceiling’ at the mid-career level, therefore the research focussed on networking at the mid-career level in order to better understand how women draw on networking to help achieve their career goals.

This paper responds to the persistent challenges that women face in networking by examining how networks are created, understood, and enacted by women. This paper reports on recent research that investigated how a select group of mid-career women understood and practiced networking. The paper discusses survey and interview data to analyse how women’s way of networking may influence career aspirations and identifies ways that women can strengthen their networking in order to build capacity and mobility for leadership.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Concept drift, which refers to non stationary learning problems over time, has increasing importance in machine learning and data mining. Many concept drift applications require fast response, which means an algorithm must always be (re)trained with the latest available data. But the process of data labeling is usually expensive and/or time consuming when compared to acquisition of unlabeled data, thus usually only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are based on assumptions that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenging task in machine learning. Recently, a particle competition and cooperation approach has been developed to realize graph-based semi-supervised learning from static data. We have extend that approach to handle data streams and concept drift. The result is a passive algorithm which uses a single classifier approach, naturally adapted to concept changes without any explicit drift detection mechanism. It has built-in mechanisms that provide a natural way of learning from new data, gradually "forgetting" older knowledge as older data items are no longer useful for the classification of newer data items. The proposed algorithm is applied to the KDD Cup 1999 Data of network intrusion, showing its effectiveness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate the long time dynamics of a strong glass former, SiO2, below the glass transition temperature by averaging single-particle trajectories over time windows which comprise roughly 100 particle oscillations. The structure on this coarse-grained time scale is very well defined in terms of coordination numbers, allowing us to identify ill-coordinated atoms, which are called defects in the following. The most numerous defects are O-O neighbors, whose lifetimes are comparable to the equilibration time at low temperature. On the other hand, SiO and OSi defects are very rare and short lived. The lifetime of defects is found to be strongly temperature dependent, consistent with activated processes. Single-particle jumps give rise to local structural rearrangements. We show that in SiO2 these structural rearrangements are coupled to the creation or annihilation of defects, giving rise to very strong correlations of jumping atoms and defects.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a model of spike-driven synaptic plasticity inspired by experimental observations and motivated by the desire to build an electronic hardware device that can learn to classify complex stimuli in a semisupervised fashion. During training, patterns of activity are sequentially imposed on the input neurons, and an additional instructor signal drives the output neurons toward the desired activity. The network is made of integrate-and-fire neurons with constant leak and a floor. The synapses are bistable, and they are modified by the arrival of presynaptic spikes. The sign of the change is determined by both the depolarization and the state of a variable that integrates the postsynaptic action potentials. Following the training phase, the instructor signal is removed, and the output neurons are driven purely by the activity of the input neurons weighted by the plastic synapses. In the absence of stimulation, the synapses preserve their internal state indefinitely. Memories are also very robust to the disruptive action of spontaneous activity. A network of 2000 input neurons is shown to be able to classify correctly a large number (thousands) of highly overlapping patterns (300 classes of preprocessed Latex characters, 30 patterns per class, and a subset of the NIST characters data set) and to generalize with performances that are better than or comparable to those of artificial neural networks. Finally we show that the synaptic dynamics is compatible with many of the experimental observations on the induction of long-term modifications (spike-timing-dependent plasticity and its dependence on both the postsynaptic depolarization and the frequency of pre- and postsynaptic neurons).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper seeks to argue the significance of platforms on emerging markets through a case study of the Shanzhai cell phone industry in Shenzhen, China. In this industry, value chains are being driven by both the technology platforms and the market platforms. The former include MTK baseband chipset, and so-called Shared PCBA and Shared Mould. The latter include the North Huaqiang Market and the Purchasing and Money Platform. Technology platforms greatly reduced the technological barriers to entry for independent design houses and system integrators, while market platforms markedly improved their poor marketing and purchasing abilities. Due to factors such as social networks, supporting industries, informality and platform governance, strong network effects have been exhibited in the two types of platforms, which have not only fostered numerous start-ups, but have also led to effective exploitation of emerging markets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protein interaction networks have become a tool to study biological processes, either for predicting molecular functions or for designing proper new drugs to regulate the main biological interactions. Furthermore, such networks are known to be organized in sub-networks of proteins contributing to the same cellular function. However, the protein function prediction is not accurate and each protein has traditionally been assigned to only one function by the network formalism. By considering the network of the physical interactions between proteins of the yeast together with a manual and single functional classification scheme, we introduce a method able to reveal important information on protein function, at both micro- and macro-scale. In particular, the inspection of the properties of oscillatory dynamics on top of the protein interaction network leads to the identification of misclassification problems in protein function assignments, as well as to unveil correct identification of protein functions. We also demonstrate that our approach can give a network representation of the meta-organization of biological processes by unraveling the interactions between different functional classes

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Topological measures of large-scale complex networks are applied to a specific artificial regulatory network model created through a whole genome duplication and divergence mechanism. This class of networks share topological features with natural transcriptional regulatory networks. Specifically, these networks display scale-free and small-world topology and possess subgraph distributions similar to those of natural networks. Thus, the topologies inherent in natural networks may be in part due to their method of creation rather than being exclusively shaped by subsequent evolution under selection. The evolvability of the dynamics of these networks is also examined by evolving networks in simulation to obtain three simple types of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes indicating that it is relatively easy to evolve these classes of dynamics in this model. (c) 2006 Elsevier Ireland Ltd. All rights reserved.