982 resultados para NEGATIVE ACTIVATION-ENERGIES
Resumo:
The kinetics of Ag-rich precipitates formation in the Cu-2 wt.% Al alloy with additions of 2, 4, 6, 8, 10 and 12 wt.% Ag was studied using microhardness changes with temperature and time, differential scanning calorimetry (DSC), differential thermal analysis (DTA), scanning electron microscopy (SEM), optical microscopy (OM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicated that an increase in the Ag content decreases the activation energy for Ag-rich precipitates formation, and that it is possible to estimate the values of the diffusion and nucleation activation energies for the Ag precipitates. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Tin dioxide varistors doped with Coo, ZnO, Ta2O5 and Cr2O3 were prepared by the mixed oxide method. Temperature dependent impedance spectroscopy revealed two different activation energies, one at low frequencies and the other at high frequencies. These activation energies were associated with the adsorption and reaction of O-2 species at the grain boundary interface. We show that Cr2O3 improves the varistor properties, generating sites for the adsorption of O' and O at the grain boundary region. The O' and O defects are truly responsible for the barrier formation at the grain boundary interface. (c) 2005 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The dehydration, thermal decomposition and transition phase stage of Zn(II)-diclofenac compound were studied by simultaneous TG-DTA and DSC techniques. The TG and DSC curves of this compound were obtained with the mass of sample of 2 and 5 mg. Additionally, DSC curves were carried out in opened and closed alpha-alumina pans under static and nitrogen atmosphere. The DTA and DSC curves show that this compound possesses exothermic transition phase between 170-180 degrees C, which it is irreversible (monotropic reaction) The kinetics study of this transition phase stage was evaluated by DSC under non-isothermal conditions. The obtained data were evaluated with the isoconversional method, where the values of activation energy (E(a) / kJ mol(-1)) was plotted in function of the conversion degree (alpha). The results show that due to mass sample, different activation energies were obtained From these curves a tendency can be seen where the plots maintain the same profile for closed lids and almost run parallel to each other.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Viscosity of fluoride glasses is generally Arrhenian between glass transition temperature and crystallization temperature. This dependence on temperature is not observed in some special compositions which have two regions with different activation energies. The viscosity of glasses 40InF(3)-20ZnF(2)-25BaF(2)-10SrF(2)-5LiCl and 40InF(3)-20ZnF(2)-15SrF(2)-20BaF(2)-5NaCl was obtained by the parallel plate method. A theoretical model has been proposed to explain the viscosity data. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
Structural and electrical properties of ZnO varistors were investigated as a function of spinel composition. Six varistor mixtures differing only in chemical composition of spinel, were prepared by mixing separately synthesized constituent phases (DSCP method). Compositions of constituent phases in sintered samples were investigated by changes of lattice parameters of the phases, as well as by EDS analysis of the constituent phases. It was found that compositions of ZnO, intergranular and spinel phases were partially changed during sintering due to redistribution of additives, that was controlled by starting spinel composition and its stability. Electrical characterization showed significant difference in electrical properties of investigated varistors: nonlinearity coefficients ranging from 22 to 55 and leakage currents differing by the order of magnitude. Activation energies of conduction were obtained from ac impedance spectroscopy measurements. Calculated values of activation energies were in the range 0.61-1.0 eV confirming difference in defect structure of ZnO grain boundaries in varistors containing different spinel phases. (C) 2001 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
The temperature dependence of photoinduced birefringence was investigated for mixed Langmuir-Blodgett (LB) films from the homopolymer poly[4'-[[2-(methacryloyloxy)ethyl]ethyl-amino]-2-chloro-4-nitroazobenzene] (HPDR13) and cadmium stearate (Cdst) and from the copolymer 4-[N-ethyl-N-(2-hydroxyethyl)]amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) and CdSt. Birefringence was achieved by impinging a linearly polarized light on the LB films. The maximum birefringence achieved decreased with temperature as thermal relaxation of the chromophores was facilitated. The buildup curves for birefringence were fitted with biexponential functions representing distinctly different mechanisms with time constants. The first, fast process is thermally activated and may be represented by an Arrhenius process. The decay of birefringence after switching off the laser source was described by a Kohlraush-Williams-Watts (KWW) function, consistent with a distribution of relaxation times for the polymer system. Activation energies were obtained from Arrhenius plots of the rate constant of the exponential functions and KWW function, which showed that the buildup of birefringence was very similar for the two polymer systems. The decay, however, was slower for the LB film from MMA-DR13/CdSt. (C) 2002 Published by Elsevier B.V. Ltd.
Resumo:
Pectinmethylesterase (PME) was extracted from guava fruit (Psidium guajava L.), cultivar Paluma, by 70% ammonium sulphate saturation and partially purified by gel filtration on Sephadex G100. Gel filtration showed PME isoenzymes with different values of molecular mass. Two samples were examined: concPME (70% saturation by ammonium sulphate) and Iso4 PME (one of the isoforms from gel filtration with the greatest specific activity). Optimum pH of the enzyme (for both samples) was 8.5 and optimum temperature ranged from 75 and 85 degrees C. The optimum sodium chloride concentration was 0.15 M. The K-M and V-max ranged from 0.32 to 0.23 mg m1(-1) and 244 to 53.2 mu mol/min, respectively, for concPME and Iso4PME. The activation energies (E-a) were 64.5 and 103 kJ/mol, respectively, for concPME and Iso4PME. Guava PME, cv Paluma, is a very thermostable enzyme, showing great heat stability at all temperatures studied. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Two different carbon/epoxy prepreg materials were characterized and compared using thermal (DSC, TGA, and DMA) and rheological analyses. A prepreg system (carbon fiber preimpregnated with epoxy resin F584) that is currently used in the commercial airplane industry was compared with a prepreg system that is a prospective candidate for the same applications (carbon fiber prepreg/epoxy resin 8552). The differences in the curing kinetics mechanisms of both prepreg systems were identified through the DSC, TGA, DMA, and rheological analyses. Based on these thermal analysis techniques, it was verified that the curing of both epoxy resin systems follow a cure kinetic of n order. Even though their reaction heats were found to be slightly different, the kinetics of these systems were nevertheless very similar. The activation energies for both prepreg systems were determined by DSC analysis, using Arrhenius's method, and were found to be quite similar. DMA measurements of the cured prepregs demonstrated that they exhibited similar degrees of cure and different glass transition temperatures. Furthermore, the use of the rheological analysis revealed small differences in the gel temperatures of the two prepreg systems that were examined.
Resumo:
The electrical properties of tin oxide varistors doped with CoO, Nb2O5 and Cr2O3, were investigated using the impedance spectroscopy technique with the temperature ranging from 25 to 400 degrees C. The impedance data, represented by means of Nyquist diagrams, show two time constants with different activation energies, one at low frequencies and the other at high frequencies. These activation energies were associated with the adsorption and reaction of O-2 species at the grain boundary interface. The Arrhenius plots show two slopes with a turnover at 200 degrees C for both the higher and lower frequency time constants. This behavior can be related with the decrease of minor charge carrier density. The barrier formation mechanism was associated with the presence of Cr-Sn at the surface, which promotes the adsorption of the O' and O species which are in turn proposed as being responsible for the barrier formation. (C) 1998 American Institute of Physics. [S0021-8979(98)04719-7]
Resumo:
Temperature and frequency dependence of the F-19 nuclear spin relaxation of the fluoroindate glass, 40InF(3)-20ZnF(2)- 20SrF(2)-2GaF(3)-2NaF-16BaF(2) and the fluorozirconate glass, 50ZrF(4)-20BaF(2)-21LiF-5LaF(3)-4AlF(3); are reported. Measurements were undertaken on pure and Gd3+ doped samples, in the temperature range of 185-1000 K, covering the region below and above the glass transition temperature, T-g. The temperature and frequency dependence of the spin-lattice relaxation rate, T-1(-1), measured in the glassy state at temperature <300 K, is less than the observed dependence at higher temperatures. At temperatures >T-g, the fluorine mobility increases, leading to a more efficient spins lattice relaxation process. Activation energies, for F- motion, are 0.8 eV for the fluoroindate glass and 1 eV for the fluorozirconate glass. The addition of Gd3+ paramagnetic impurities;at 0.1-wt%, does not alter the temperature and frequency dependence of T-1(-1), but increases its magnitude more than one order of magnitude. At temperatures <400 K, the spin-spin relaxation time, T-2(-1), measured for all samples, is determined by the rigid-lattice nuclear dipole-dipole coupling, and it is temperature independent within the accuracy of the measurements. Results obtained for the pure glass, at temperatures >400 K, show that T-2(-1) decreases monotonically as the temperature increases. This decrease is explained as a consequence of the motional narrowing effect caused by the onset of the diffusive motion of the F- ions, with an activation energy around 0.8 eV. For the doped samples, the hyperfine interaction with the paramagnetic impurities is most effective in the relaxation of the nuclear spin, causing an increase in the T(2)(-1)s observed at temperatures >600 K. (C) 1999 Elsevier B.V. B.V. All rights reserved.