136 resultados para NANOCLUSTERS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work,we report the application of novel, water-soluble fluorescent Ag clusters in fluorescent sensors for detecting cysteine, an important biological analyte. The fluorescence of poly(methacrylic acid) (PMAA)templated Ag clusters was found to be quenched effectively by cysteine, but not when the other alpha-amino acids were present. By virtue of the specific response, a new, simple, and sensitive fluorescent method for detecting cysteine has been developed based on Ag clusters. The present assay allows for the selective determination of cysteine in the range of 2.5 x 10(-8) to 6.0 x 10(-6) M with a detection limit of 20 nM at a signal-to-noise ratio of 3. Based on the absorption and fluorescence studies, we suggested that cysteine quenched the emission by the thiol-adsorption-accelerated oxidation of the emissive Ag clusters. The present study shows a promising step toward the application of silver clusters, a new class of attractive fluorescence probes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we report a facile route which is based Oil tuning doping concentration of Mn2+ ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn2+ dopant (orange-yellow) are sensitive to the Mn2+ doping concentration, due to the energy transfer from ZnS host to Mn2+ dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn2+-doped ZnS nanocrystals. Furthermore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel and facile chemical synthesis of highly faceted multiply twinned gold nanocrystals is reported. The gold nanocrystals are hexagonal in transmission electron microscopy and icosahedral in scanning electron microscopy. Phosphotungstic acid (PTA), which was previously reduced, serves as a reductant and stabilizer for the synthesis of gold nanocrystals. The PTA-gold nanocomposites are quite stable in aqueous solutions, and electrochemically active towards the hydrogen evolution reaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(diallyl dimethylammonium) chloride (PDDA), an ordinary and watersoluble, cationic polyelectrolyte, was investigated for its ability to generate and stabilize gold colloids from a chloroauric acid precursor. In this reaction, PDDA acted as both reducing and stabilizing agents for gold nanoparticles (AuNPs). More importantly, PDDA is a quaternary ammonium polyelectrolyte, which shows that the scope of the reducing and stabilizing agents for metal nanoparticles can be extended from the amine-containing molecules to quaternary ammonium polyelectrolytes or salts. UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS) and Fourier transform infrared (FTIR) were used to characterize the synthetic AuNPs. The PDDA-protected AuNPs obtained are very stable and have relative narrow size distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendrimer-protected gold nanoparticles have been facilely obtained by heating an aqueous solution containing third generation poly(propyleneimine) dendrimers and HAuCl4 without the additional step of introducing other reducing agents. Transmission electron microscopy (TEM) and UV vis data indicate the size the nucleation and growth kinetics of gold nanoparticles thus formed which can be tuned by changing the initial molar ratio of dendrimer to gold.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Besides the spheres, polyhedral silver nanoclusters were prepared by the polyol process with 3-aminopropyl triethoxysilane (APTES). In the process, APTES acts as not only the stabilizer but also the template.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Size-controlled Ag3PW12O40 nanoparticles have been synthesized in situ in polyelectrolyte multilayer thin films via layer-by-layer self-assembly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyrolysis of hyperbranched poly[1,1'-ferrocenylene(methyl)silyne] (5) yields mesoporous, conductive, and magnetic ceramics (6). Sintering at high temperatures (1000-1200 degrees C) under nitrogen and argon converts 5 to 6N and 6A, respectively, in similar to 48-62% yields. The ceramization yields of 5 are higher than that (similar to 36%) of its linear counterpart poly[1,1'-ferrocenylene(dimethyl)silylene] (1), revealing that the hyperbranched polymer is superior to the linear one as a ceramic precursor. The ceramic products 6 are characterized by SEM, XPS, EDX, XRD, and SQUID. It is found that the ceramics are electrically conductive and possess a mesoporous architecture constructed of tortuously interconnected nanoclusters. The iron contents of 6 estimated by EDX are 36-43%, much higher than that (11%) of the ceramic 2 prepared from the linear precursor 1. The nanocrystals in 6N are mainly alpha-Fe2O3 whereas those in 6A are mainly Fe3Si. When magnetized by an external field at room temperature, 6A exhibits a high-saturation magnetization (M-s similar to 49 emu/g) and near-zero remanence and coercivity; that is, 6A is an excellent soft ferromagnetic material with an extremely low hysteresis loss.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A versatile process employing anionic surfactants has been developed for the preparation of processible nanocomposite films with electrical conductivity and magnetic susceptibility. Maghemite (g-Fe2O3) nanoclusters (similar to 10 nm in size) are coated with 4-dodecyl- benzenesulfonic acid, and polyaniline (PAn) chains are doped with 10-camphorsulfonic acid. The coated nanoclusters and doped polymers are soluble in common solvents, and casting the solutions readily gives free-standing nanocomposite films with nanocluster contents as high as similar to 50 wt %. The g-Fe2O3/PAn nanocomposites show high conductivity (82-337 S cm(-1)) and magnetizability (up to similar to 35 emu/g g-Fe2O3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A unique templating approach for the synthesis of hexagonal mesoporous aluminosilicates via self-assembly of pre-formed aluminosilcate nanoclusters with the templating micella formed by cetyltrimethylammonium bromide (CTAB) is described. The obtained materials of MAS-5 are hydrothermally stable, which is shown by X-ray diffraction (XRD) analysis. Furthermore, as characterized by NMR technique, MAS-5 has stable tetrahedral aluminum sites that is the major contributions to the acidity of aluminosilicate molecular sieve, and on non-framework aluminium species in the samples was observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flikkema, Edwin; Bromley, S.T., (2003) 'A new interatomic potential for nanoscale silica', Chemical Physics Letters 378(5-6) pp.622-629 RAE2008

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diminishing non-renewable energy resources and planet-wide de-pollution on our planet are among the major problems which mankind faces into the future. To solve these problems, renewable energy sources such as readily available and inexhaustible sunlight will have to be used. There are however no readily available photocatalysts that are photocatalytically active under visible light; it is well established that the band gap of the prototypical photocatalyst, titanium dioxide, is the UV region with the consequence that only 4% of sun light is utilized. For this reason, this PhD project focused on developing new materials, based on titanium dioxide, which can be used in visible light activated photocatalytic hydrogen production and destruction of pollutant molecules. The main goal of this project is to use simulations based on first principles to engineer and understand rationally, materials based on modifying TiO2 that will have the following properties: (1) a suitable band gap in order to increase the efficiency of visible light absorption, with a gap around 2 – 2.5 eV considered optimum. (2). The second key aspect in the photocatalytic process is electron and hole separation after photoexcitation, which enable oxidation/reduction reactions necessary to i.e. decompose pollutants. (3) Enhanced activity over unmodified TiO2. In this thesis I present results on new materials based on modifying TiO2 with supported metal oxide nanoclusters, from two classes, namely: transition metal oxides (Ti, Ni, Cu) and p-block metal oxides (Sn, Pb, Bi). We find that the deposited metal oxide nanoclusters are stable at rutile and anatase TiO2 surfaces and present an analysis of changes to the band gap of TiO2, identifying those modifiers that can change the band gap to the desirable range and the origin of this. A successful collaboration with experimental researchers in Japan confirms many of the simulation results where the origin of improved visible light photocatalytic activity of oxide nanocluster-modified TiO2 is now well understood. The work presented in this thesis, creates a road map for the design of materials with desired photocatalytic properties and contributes to better understanding these properties which are of great application in renewable energy utilization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal nanoclusters can be produced cheaply and precisely in an electrochemical environment. Experimentally this method works in some systems, but not in others, and the unusual stability of the clusters has remained a mystery. We have simulated the deposition of the clusters using classical molecular dynamics and studied their stability by grand-canonical Monte Carlo simulations. We find that electrochemically stable clusters occur only in those cases where the two metals involved form stable alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructure and molecular orientation play a crucial role in determining the functionality of organic thin films. In practical devices, such as organic solar cells consisting of donor-acceptor mixtures, crystallinity is poor and these qualities cannot be readily determined by conventional diffraction techniques, while common microscopy only reveals surface morphology. Using a simple nondestructive technique, namely, continuous-wave electron paramagnetic resonance spectroscopy, which exploits the well-understood angular dependence of the g-factor and hyperfine tensors, we show that in the solar cell blend of C-60 and copper phthalocyanine (CuPc)-for which X-ray diffraction gives no information-the CuPc, and by implication the C-60, molecules form nanoclusters, with the planes of the CuPc molecules oriented perpendicular to the film surface. This information demonstrates that the current nanostructure in CuPc:C-60 solar cells is far from optimal and suggests that their efficiency could be considerably increased by alternative film growth algorithms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Au nanoparticles (AuNPs) have been widely used not only as optical labels or ‘weight” labels for the detections of biorecognition events but also an amplifier of surface plasmon resonance biosensors. The intrinsic property of gold nuclei composing of a group of Au atoms to catalyze the reduction of metal ions on the NPs and thereby to enlarge the metallic nanoparticles is employed in different biosensing paths. In a solution containing Au+ ions (e.g. HAuCl4) and the Au clusters, hydrated electrons which are reduced from oxidation of reducers (H2O2, sodium citrate, ascorbic acid, or NaBH4) will be used to reduce the Au+ ion leading to the deposition of Au+ to the Au0 (Au clusters). The reaction will be catalyzed continuously by the Au0 until the Au+ ions and hydrated electrons are exhausted. As a result, the AuNPs will be grown and their optical properties are also changed. If the AuNP nanoclusters are used as probes, the color change will be dependent on amount of analytes, thus give a quantitative monitoring of the analytes.

In this study, we incorporate the use of magnetic beads with the nanocrystalline growth to quantify a target protein based on immunoreactions. Prostate specific antigen (PSA) is chosen as the target analyte because of its values in diagnosis of prostate cancer. A double-sandwiched immunoassay is performed by gold-tagged monoclonal PSA antibody-PSA antigen – magnetic bead-tagged polyclonal PSA antibody interactions. After the immunoreactions, the target analytes are preconcentrated and separated by the magnetic beads while the nanogrowth plays a role of colorimetric signal developer.

The result shows that this is a very sensitive, robust and excellent strategy to detect biological interactions. PSA antigen is detected at femtomolar level with very high specificity under the presence of undesired proteins of crude samples. Furthermore, the method also shows great potential to detect other biological interactions. More details will be described in our presentation.