791 resultados para Music - Instruction and study
Resumo:
Background Despite bronchiectasis being increasingly recognised as an important cause of chronic respiratory morbidity in both indigenous and non-indigenous settings globally, high quality evidence to inform management is scarce. It is assumed that antibiotics are efficacious for all bronchiectasis exacerbations, but not all practitioners agree. Inadequately treated exacerbations may risk lung function deterioration. Our study tests the hypothesis that both oral azithromycin and amoxicillin-clavulanic acid are superior to placebo at improving resolution rates of respiratory exacerbations by day 14 in children with bronchiectasis unrelated to cystic fibrosis. Methods We are conducting a bronchiectasis exacerbation study (BEST), which is a multicentre, randomised, double-blind, double-dummy, placebo-controlled, parallel group trial, in five centres (Brisbane, Perth, Darwin, Melbourne, Auckland). In the component of BEST presented here, 189 children fulfilling inclusion criteria are randomised (allocation-concealed) to receive amoxicillin-clavulanic acid (22.5 mg/kg twice daily) with placebo-azithromycin; azithromycin (5 mg/kg daily) with placebo-amoxicillin-clavulanic acid; or placebo-azithromycin with placebo-amoxicillin-clavulanic acid for 14 days. Clinical data and a paediatric cough-specific quality of life score are obtained at baseline, at the start and resolution of exacerbations, and at day 14. In most children, blood and deep nasal swabs are also collected at the same time points. The primary outcome is the proportion of children whose exacerbations have resolved at day 14. The main secondary outcome is the paediatric cough-specific quality of life score. Other outcomes are time to next exacerbation; requirement for hospitalisation; duration of exacerbation; and spirometry data. Descriptive viral and bacteriological data from nasal samples and blood markers will also be reported. Discussion Effective, evidence-based management of exacerbations in people with bronchiectasis is clinically important. Yet, there are few randomised controlled trials (RCTs) in the neglected area of non-cystic fibrosis bronchiectasis. Indeed, no published RCTs addressing the treatment of bronchiectasis exacerbations in children exist. Our multicentre, double-blind RCT is designed to determine if azithromycin and amoxicillin-clavulanic acid, compared with placebo, improve symptom resolution on day 14 in children with acute respiratory exacerbations. Our planned assessment of the predictors of antibiotic response, the role of antibiotic-resistant respiratory pathogens, and whether early treatment with antibiotics affects duration and time to the next exacerbation, are also all novel.
Resumo:
The quality of data collection methods selected and the integrity of the data collected are integral tot eh success of a study. This chapter focuses on data collection and study validity. After reading the chapter, readers should be able to define types of data collection methods in quantitative research; list advantages and disadvantages of each method; discuss factors related to internal and external validity; critically evaluate data collection methods and discuss the need to operationalise variables of interest for data collection.
Resumo:
In recent times, blended polymers have shown a lot of promise in terms of easy processability in different shapes and forms. In the present work, polyaniline emeraldine base (PANi-EB) was doped with camphor sulfonic acid (CSA) and combined with the conducting polymer polyfluorene (PF) as well as the insulating polymer polyvinyl chloride (PVC) to synthesize CSA doped PANi-PF and PANi-PVC blended polymers. It is well known that PANi when doped with CSA becomes highly conducting. However, its poor mechanical properties, such as low tensile, compressive, and flexural strength render PANi a non-ideal material to be processed for its various practical applications, such as electromagnetic shielding, anti-corrosion shielding, photolithography and microelectronic devices etc. Thus the search for polymers which are easily processable and are capable of showing high conductivity still continues. PANi-PVC blend was prepared, which showed low conductivity which is limiting factor for certain applications. Therefore, another processable polymer PF was chosen as conducting matrix. Conducting PF can be easily processed into various shapes and forms. Therefore, a blend mixture was prepared by using PANi and PF through the use of CSA as a counter ion which forms a "bridge" between the two polymeric components of the inter-polymer complex. Two blended polymers have been synthesized and investigated for their conductivity behaviour. It was observed that the blended film of CSA doped PANi-PVC showed a room temperature electrical conductivity of 2.8 × 10-7 S/cm where as the blended film made by CSA doped PANi with conducting polymer PF showed a room temperature conductivity of 1.3 × 10-5 S/cm. Blended films were irradiated with 100 MeV silicon ions with a view to increase their conductivity with a fluence ranging from 1011 ions to 1013 per cm2 from 15 UD Pelletron accelerator at NSC, New Delhi.
Resumo:
This investigation combined musicality and theatricality in the creation of four shows: Bear with Me, The Empty City, Gentlemen Songsters and Warmwaters. Led by creative practice, the research identified four polyvalences that characterise Composed Theatre, a transformational artistic domain which offers distinct challenges for performance makers. These include tensions and resolutions between compositional and theatrical thinking; music and words; setlist and script; and finally persona and character. The research finds that these interplays not only lend Composed Theatre its distinct qualities, but offer a potential set of balances to strike for writers, performers, composers and musicians who mix music and theatre in intermedial performance.
Resumo:
Antiferroelectric lead zirconate (PZ) thin films were deposited by pulsed laser ablation on platinum-coated silicon substrates. Films showed a polycrystalline pervoskite structure upon annealing at 650 degrees C for 5-10 min. Dielectric properties were investigated as a function of temperature and frequency. The dielectric constant of PZ films was 220 at 100 kHz with a dissipation factor of 0.03. The electric field induced transformation from the antiferroelectric phase to the ferroelectric phase was observed through the polarization change, using a Sawyer-Tower circuit. The maximum polarization value obtained was 40 mu C/cm(2). The average fields to excite the ferroelectric state, and to reverse to the antiferroelectric state were 71 and 140 kV/cm, respectively. The field induced switching was also observed through double maxima in capacitance-voltage characteristics. Leakage current was studied in terms of current versus time and current versus voltage measurements. A leakage current density of 5x10(-7) A/cm(2) at 3 V, for a film of 0.7 mu m thickness, was noted at room temperature. The trap mechanism was investigated in detail in lead zirconate thin films based upon a space charge limited conduction mechanism. The films showed a backward switching time of less than 90 ns at room temperature.
Resumo:
Thin films of BaZrO3 (BZ) were grown using a pulsed laser deposition technique on platinum coated silicon substrates. Films showed a polycrystalline perovskite structure upon different annealing procedures of in-situ and ex-situ crystallization. The composition analyses were done using Energy dispersive X-ray analysis (EDAX) and Secondary ion mass spectrometry (SIMS). The SIMS analysis revealed that the ZrO2 formation at the right interface of substrate and the film leads the degradation of the device on the electrical properties in the case of ex-situ crystallized films. But the in-situ films exhibited no interfacial formation. The dielectric properties have been studied for the different temperatures in the frequency regime of 40 Hz to 100kHz. The response of the film to external ac stimuli was studied at different temperatures, and it showed that ac conductivity values in the limiting case are correspond to oxygen vacancy motion. The electrical modulus is fitted to a stretched exponential function and the results clearly indicate the presence of the non-Debye type of dielectric relaxation in these materials.
Resumo:
Molecules exhibiting a thermotropic liquid-crystalline property have acquired significant importance due to their sensitivity to external stimuli such as temperature, mechanical forces, and electric and magnetic fields. As a result, several novel mesogens have been synthesized by the introduction of various functional groups in the vicinity of the aromatic core as well as in the side chains and their properties have been studied. In the present study, we report three-ring mesogens with hydroxyl groups at one terminal. These mesogens were synthesized by a multistep route, and structural characterization was accomplished by spectral techniques. The mesophase properties were studied by hot-stage optical polarizing microscopy, differential scanning calorimetry, and small-angle X-ray scattering. An enantiotropic nematic phase was noticed for lower homologues, while an additional smectic C phase was found for higher homologues. Solid-state high-resolution natural abundance (13)C NMR studies of a typical mesogen in the solid phase and in the mesophases have been carried out. The (13)C NMR spectrum of the mesogen in the smectic C and nematic phases indicated spontaneous alignment of the molecule in the magnetic field. By utilizing the two-dimensional separated local field (SLF) NMR experiment known as SAMPI4, (13)C-(1)H dipolar couplings have been obtained, which were utilized to determine the orientational order parameters of the mesogen.
Resumo:
The morphology of nanocrystalline Co3O4 synthesized through microwave irradiation of a solution of a cobalt complex is found to depend reproducibly on the conditions of synthesis and, in particular, on the composition of the solvent used. Despite the rapidity of the process, oriented aggregation occurs under certain conditions, depending on solvent composition. Annealing the oriented samples leads to microstructures with significant porosity, rendering the material suitable as electrodes for electrochemical capacitors. Electrochemical analysis of the oxide samples was carried out in 0.1M Na2SO4 electrolyte vs. Ag/AgCl electrode. A stable specific capacitance of 221 F/g was measured for a meso-porous sample displaying oriented aggregation. Stability of these oxide materials were checked for longer charge-discharge cycling. (C) 2012 The Electrochemical Society. DOI: 10.1149/2.002210jes] All rights reserved.
Resumo:
In pursuit of newer and more effective contrast agents for magnetic resonance imaging, we report in this article the use of biocompatible chitosan-coated ferrite nanoparticles of different kinds with a view to determine their potential applications as the contrast agents in the field of nuclear magnetic resonance. The single-phase ferrite particles were synthesized by chemical co-precipitation (CoFe2O4 and Fe3O4) and by applying ultrasonic vibration (CoFe2O4 and Co0.8Zn0.2Fe2O4). Although magnetic anisotropy of CoFe2O4 nanoparticle leads to finite coercivity even for nanoensembles, it has been reduced significantly to a minimum level by applying ultrasonic vibration. Fe3O4 synthesized by chemical co-precipitation yielded particles which already possess negligible coercivity and remanence. Substitution of Co by Zn in CoFe2O4 increases the magnetization significantly with a small increase in coercivity and remanence. Particles synthesized by the application of ultrasonic vibration leads to the higher values of T-2 relaxivities than by chemical coprecipitation. We report that the T-2 relaxivities of these particles are of two orders of magnitude higher than corresponding T-1 relaxivities. Thus, these particles are evidently suitable as contrast agent for T-2 weighted MR images.
Resumo:
Three highly stable, hexacoordinated nonoxidovanadium(IV), V-IV(L)(2), complexes (1-3) have been isolated and structurally characterized with tridentate aroylhydrazonates containing ONO donor atoms. All the complexes are stable in the open air in the solid state as well as in solution, a phenomenon rarely observed in nonoxidovanadium(IV) complexes. The complexes have good solubility in organic solvents, permitting electrochemical and various spectroscopic investigations. The existence of nonoxidovanadium(IV) complexes was confirmed by elemental analysis, ESI mass spectroscopy, cyclic voltammetry, EPR, and magnetic susceptibility measurements. X-ray crystallography showed the N3O3 donor set to define a trigonal prismatic geometry in each case. All the complexes show in vitro insulin mimetic activity against insulin responsive L6 myoblast cells, with complex 3 being the most potent, which is comparable to insulin at the complex concentration of 4 mu M, while the others have moderate insulin mimetic activity. In addition, the in vitro antiproliferative activity of complexes 1-3 against the He La cell line was assayed. The cytotoxicity of the complexes is affected by the various functional groups attached to the bezoylhydrazone derivative and 2 showed considerable antiproliferative activity compared to the most commonly used chemotherapeutic drugs.
Resumo:
Several new ligand platforms designed to support iron dinitrogen chemistry have been developed. First, we report Fe complexes of a tris(phosphino)alkyl (CPiPr3) ligand featuring an axial carbon donor intended to conceptually model the interstitial carbide atom of the nitrogenase iron-molybdenum cofactor (FeMoco). It is established that in this scaffold, the iron center binds dinitrogen trans to the Calkyl anchor in three structurally characterized oxidation states. Fe-Calkyl lengthening is observed upon reduction, reflective of significant ionic character in the Fe-Calkyl interaction. The anionic (CPiPr3)FeN2- species can be functionalized by a silyl electrophile to generate (CPiPr3)Fe-N2SiR3. This species also functions as a modest catalyst for the reduction of N2 to NH3. Next, we introduce a new binucleating ligand scaffold that supports an Fe(μ-SAr)Fe diiron subunit that coordinates dinitrogen (N2-Fe(μ-SAr)Fe-N2) across at least three oxidation states (FeIIFeII, FeIIFeI, and FeIFeI). Despite the sulfur-rich coordination environment of iron in FeMoco, synthetic examples of transition metal model complexes that bind N2 and also feature sulfur donor ligands remain scarce; these complexes thus represent an unusual series of low-valent diiron complexes featuring thiolate and dinitrogen ligands. The (N2-Fe(μ-SAr)Fe-N2) system undergoes reduction of the bound N2 to produce NH3 (~50% yield) and can efficiently catalyze the disproportionation of N2H4 to NH3 and N2. The present scaffold also supports dinitrogen binding concomitant with hydride as a co-ligand. Next, inspired by the importance of secondary-sphere interactions in many metalloenzymes, we present complexes of iron in two new ligand scaffolds ([SiPNMe3] and [SiPiPr2PNMe]) that incorporate hydrogen-bond acceptors (tertiary amines) which engage in interactions with nitrogenous substrates bound to the iron center (NH3 and N2H4). Cation binding is also facilitated in anionic Fe(0)-N2 complexes. While Fe-N2 complexes of a related ligand ([SiPiPr3]) lacking hydrogen-bond acceptors produce a substantial amount of ammonia when treated with acid and reductant, the presence of the pendant amines instead facilitates the formation of metal hydride species.
Additionally, we present the development and mechanistic study of copper-mediated and copper-catalyzed photoinduced C-N bond forming reactions. Irradiation of a copper-amido complex, ((m-tol)3P)2Cu(carbazolide), in the presence of aryl halides furnishes N-phenylcarbazole under mild conditions. The mechanism likely proceeds via single-electron transfer from an excited state of the copper complex to the aryl halide, generating an aryl radical. An array of experimental data are consistent with a radical intermediate, including a cyclization/stereochemical investigation and a reactivity study, providing the first substantial experimental support for the viability of a radical pathway for Ullmann C-N bond formation. The copper complex can also be used as a precatalyst for Ullmann C-N couplings. We also disclose further study of catalytic Calkyl-N couplings using a CuI precatalyst, and discuss the likely role of [Cu(carbazolide)2]- and [Cu(carbazolide)3]- species as intermediates in these reactions.
Finally, we report a series of four-coordinate, pseudotetrahedral P3FeII-X complexes supported by tris(phosphine)borate ([PhBP3FeR]-) and phosphiniminato X-type ligands (-N=PR'3) that in combination tune the spin-crossover behavior of the system. Low-coordinate transition metal complexes such as these that undergo reversible spin-crossover remain rare, and the spin equilibria of these systems have been studied in detail by a suite of spectroscopic techniques.
Resumo:
Artículo científico: postprint
Resumo:
In order to explore new highly organic electroluminescent materials, six symmetrical aromatic oxide-oxadiazoles containing pyridine ring 4a similar to 4f were synthesized through cyclization of substituted benzoic acid (2) with 2,6-dihydrazide pyridine (3) by "one-pot" method in POCl3. Their structures were confirmed by MS, IR, H-1 NMR techniques and elemental analysis. The fluorescence spectra of the target compounds showed that the A,m ranged from 347 to 507 nm, and the maximum A,m were close to 384 nm, which showed that these compounds have good fluorescence with strong fluorescence intensity. When the 5-Br group was introduced into the aromatic ring (4e and 4f), the fluorescent emission wavelength took place Einstein shift, and the fluorescent intensity decreased a little. Using quinine bisulphate as a reference, the fluorescence quantum yields were all tested, and the introduction of 5-Br group had no visible effect on fluorescence quantum yield.
Resumo:
The synthesis of three new series of chiral Schiffs bases containing benzilideneaniline and 2-hydroxybenzilideneaniline moieties as mesogenic cores is presented. Differential scanning calorimetry, optical polarizing microscopy and X-ray diffraction measurements were used to study the phase transition temperatures and behaviour. The results reveal that most of these materials show chiral smectic mesomorphism.