795 resultados para Muscle strength
Resumo:
The present study investigates the effects of vitamin D on muscle function in postmenopausal women. It has been shown that vitamin D supplementation in postmenopausal women with hypovitaminosis D provides significant protective factor against sarcopenia, with significant increases in muscle strength and control of progressive loss of lean mass. We aimed to evaluate the effect of supplementation of vitamin D (VITD) alone on muscle function in younger postmenopausal women. In this double-blind, placebo-controlled clinical trial, 160 Brazilian postmenopausal women were randomized into two groups: VITD group consisting of patients receiving vitamin D3 1000 IU/day orally (n = 80) or placebo group (n = 80). Women with amenorrhea for more than 12 months and age 50-65 years, with a history of falls (previous 12 months), were included. The intervention time was 9 months, with assessments at two points, start and end. Lean mass was estimated by total-body dual-energy X-ray absorptiometry (DXA) and muscle strength by handgrip strength and chair rising test. The plasma concentrations of 25-hydroxyvitamin D [25(OH)D] were measured by high-performance liquid chromatography (HPLC). Statistical analysis was by intention to treat (ITT), using ANOVA, Student's t test, and Tukey's test. After 9 months, average values of 25(OH)D increased from 15.0 ± 7.5 to 27.5 ± 10.4 ng/ml (+45.4 %) in the VITD group and decreased from 16.9 ± 6.7 to 13.8 ± 6.0 ng/ml (-18.5 %) in the placebo group (p < 0.001). In the VITD group, there was significant increase in muscle strength (+25.3 %) of the lower limbs by chair rising test (p = 0.036). In women in the placebo group, there was considerable loss (-6.8 %) in the lean mass (p = 0.030). The supplementation of vitamin D alone in postmenopausal women provided significant protective factor against the occurrence of sarcopenia, with significant increases in muscle strength and control of progressive loss of lean mass.
Resumo:
Considering the importance of muscle strength to functional capacity in the elderly, the study investigated the effects of age on isokinetic performance and torque production as a function of muscle length. Eleven younger (24.2±2.9years) and seventeen older men (62.7±2.5years) were subjected to concentric and eccentric isokinetic knee extension/flexion at 60°.s-1 and 120°.s-1 through a functional range of motion. The older group presented lower peak torque (Nm) than the young group for both isokinetic contraction types (age effect, p<0.001). Peak torque deficits in the older group were near 30% and 29% for concentric and eccentric contraction, respectively. Concentric peak torque was lower at 120.s-1 than at 60.s-1 for both groups (angular velocity effect, p<0.001). Eccentric knee extension torque was the only exercise tested that showed an interaction effect between age and muscle length (p<0.001), which suggested different torque responses to the muscle length between groups. Compared with the young group, the eccentric knee extension torque was 22% to 56% lower in the older group, with the deficits being lower in the shortened muscle length (22-27%) and higher (33-56%) in stretched muscle length. In older men, the production of eccentric knee strength seems to be muscle length-dependent. At more stretched positions, older subjects lose the capacity to generate eccentric knee extension torque. More studies are needed to assess the mechanisms involved in eccentric strength preservation with aging and its relationship with muscle length.
Resumo:
Barroso, R, Tricoli, V, dos Santos Gil, S, Ugrinowitsch, C, and Roschel, H. Maximal strength, number of repetitions, and total volume are differently affected by static-, ballistic-, and proprioceptive neuromuscular facilitation stretching. J Strength Cond Res 26(9): 2432-2437, 2012-Stretching exercises have been traditionally incorporated into warm-up routines before training sessions and sport events. However, the effects of stretching on maximal strength and strength endurance performance seem to depend on the type of stretching employed. The objective of this study was to compare the effects of static stretching (SS), ballistic stretching (BS), and proprioceptive neuromuscular facilitation (PNF) stretching on maximal strength, number of repetitions at a submaximal load, and total volume (i.e., number of repetitions 3 external load) in a multiple-set resistance training bout. Twelve strength-trained men (20.4 +/- 4.5 years, 67.9 +/- 6.3 kg, 173.3 +/- 8.5 cm) volunteered to participate in this study. All of the subjects completed 8 experimental sessions. Four experimental sessions were designed to test maximal strength in the leg press (i.e., 1 repetition maximum [1RM]) after each stretching condition (SS, BS, PNF, or no-stretching [NS]). During the other 4 sessions, the number of repetitions performed at 80% 1RM was assessed after each stretching condition. All of the stretching protocols significantly improved the range of motion in the sit-and-reach test when compared with NS. Further, PNF induced greater changes in the sit-and-reach test than BS did (4.7 +/- 1.6, 2.9 +/- 1.5, and 1.9 +/- 1.4 cm for PNF, SS, and BS, respectively). Leg press 1RM values were decreased only after the PNF condition (5.5%, p < 0.001). All the stretching protocols significantly reduced the number of repetitions (SS: 20.8%, p < 0.001; BS: 17.8%, p = 0.01; PNF: 22.7%, p < 0.001) and total volume (SS: 20.4%, p < 0.001; BS: 17.9%, p = 0.01; PNF: 22.4%, p < 0.001) when compared with NS. The results from this study suggest that, to avoid a decrease in both the number of repetitions and total volume, stretching exercises should not be performed before a resistance training session. Additionally, strength-trained individuals may experience reduced maximal dynamic strength after PNF stretching.
Resumo:
Background: Walking speed seems to be related to aerobic capacity, lower limb strength, and functional mobility, however it is not clear whether there is a direct relationship between improvement in muscle strength and gait performance in early postmenopausal women. Objective: To evaluate the effect of muscle strengthening exercises on the performance of the 6-minute walk test in women within 5 years of menopause. Methods: The women were randomized into control group (n=31), which performed no exercise, and exercise group (n=27), which performed muscle strengthening exercises. The exercises were performed twice a week for 3 months. The exercise protocol consisted of warm-up, stretching, and strengthening of the quadriceps, hamstring, calf, tibialis anterior, gluteus maximus, and abdominal muscles, followed by relaxation. Muscular strength training started with 60% of 1MR (2 series of 10-15 repetitions), reaching 85% until the end of the 3-month period (4 series of 6 repetitions each). Results: The between-group comparisons pre- and post-intervention did not show any difference in distance walked, heart rate or blood pressure (p>0.05), but showed differences in muscle strength post-intervention, with the exercise group showing greater strength (p<0.05). In the within-group comparison, there were differences in final heart rate and quadriceps and hamstring strength pre- and post-intervention in the exercise group (p<0.05). Conclusion: The results suggest that muscle strengthening of the lower limbs did not improve performance in the 6-minute walk test in this population of postmenopausal women. Trial registration ACTRN12609001053213.
Resumo:
Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.
Resumo:
LAURENTINO, G. C., C. UGRINOWITSCH, H. ROSCHEL, M. S. AOKI, A. G. SOARES, M. NEVES JR, A. Y. AIHARA, A. DA ROCHA CORREA FERNANDES, and V. TRICOLI. Strength Training with Blood Flow Restriction Diminishes Myostatin Gene Expression. Med. Sci. Sports Exerc., Vol. 44, No. 3, pp. 406-412, 2012. Purpose: The aim of the study was to determine whether the similar muscle strength and hypertrophy responses observed after either low-intensity resistance exercise associated with moderate blood flow restriction or high-intensity resistance exercise are associated with similar changes in messenger RNA (mRNA) expression of selected genes involved in myostatin (MSTN) signaling. Methods: Twenty-nine physically active male subjects were divided into three groups: low-intensity (20% one-repetition maximum (1RM)) resistance training (LI) (n = 10), low-intensity resistance exercise associated with moderate blood flow restriction (LIR) (n = 10), and high-intensity (80% 1RM) resistance exercise (HI) (n = 9). All of the groups underwent an 8-wk training program. Maximal dynamic knee extension strength (1RM), quadriceps cross-sectional area (CSA), MSTN, follistatin-like related genes (follistatin (FLST), follistatin-like 3 (FLST-3)), activin IIb, growth and differentiation factor-associated serum protein 1 (GASP-1), and MAD-related protein (SMAD-7) mRNA gene expression were assessed before and after training. Results: Knee extension 1RM significantly increased in all groups (LI = 20.7%, LIR = 40.1%, and HI = 36.2%). CSA increased in both the LIR and HI groups (6.3% and 6.1%, respectively). MSTN mRNA expression decreased in the LIR and HI groups (45% and 41%, respectively). There were no significant changes in activin IIb (P > 0.05). FLST and FLST-3 mRNA expression increased in all groups from pre- to posttest (P < 0.001). FLST-3 expression was significantly greater in the HI when compared with the LIR and LI groups at posttest (P = 0.024 and P = 0.018, respectively). GASP-1 and SMAD-7 gene expression significantly increased in both the LIR and HI groups. Conclusions: We concluded that LIR was able to induce gains in 1RM and quadriceps CSA similar to those observed after traditional HI. These responses may be related to the concomitant decrease in MSTN and increase in FLST isoforms, GASP-1, and SMAD-7 mRNA gene expression.
Resumo:
The effects of adipose-derived mesenchymal stem cells (ADMSC) transplantation on degeneration, regeneration and skeletal muscle function were investigated in dystrophin-deficient mice (24-week-old). ADMSC transplantation improved muscle strength and, resistance to fatigue. An increase in fiber cross-sectional area and in the number of fibers with centralized nuclei and augment of myogenin content were observed. In ADMSC-treated muscles a decrease in muscle content of TNF-alpha, IL-6 and oxidative stress measured by Amplex(A (R)) reagent were observed. The level of TGF-beta 1 was lowered whereas that of VEGF, IL-10 and IL-4 were increased by ADMSC treatment. An increase in markers of macrophage M1 (CD11 and F4-80) and a decrease in T lymphocyte marker (CD3) and arginase-1 were also observed in ADMSCs-treated dystrophic muscle. No change was observed in iNOS expression. Increased phosphorylation of Akt, p70S6k and 4E-BP1 was found in dystrophic muscles treated with ADMSC. These results suggest that ADMSC transplantation modulates inflammation and improves muscle tissue regeneration, ameliorating the dystrophic phenotype in dystrophin-deficient mice.
Resumo:
Objective: Obesity is a major public health problem leading to, among other things, reduced functional capacity. Moreover, obesity-related declines in functional capacity may be compounded by the detrimental consequences of menopause. The aim of this study was to understand the potential effects of excess body mass on measures of functional capacity in postmenopausal women. Methods: Forty-five postmenopausal women aged 50 to 60 years were divided into two groups according to body mass index (BMI): obese (BMI, >= 30 kg/m(2); n = 19) and nonobese (BMI, 18.5-29.9 kg/m(2); n = 26). To determine clinical characteristics, body composition, bone mineral density, and maximal exercise testing was performed, and a 3-day dietary record was estimated. To assess quadriceps function, isokinetic exercise testing at 60 degrees per second (quadriceps strength) and at 300 degrees per second (quadriceps fatigue) was performed. Results: The absolute value of the peak torque was not significantly different between the groups; however, when the data were normalized by body mass and lean mass, significantly lower values were observed for obese women compared with those in the nonobese group (128% +/- 25% vs 155% +/- 24% and 224% +/- 38% vs 257% +/- 47%, P < 0.05). The fatigue index did not show any significant difference for either group; however, when the data were normalized by the body mass and lean mass, significantly lower values were observed for obese women (69% +/- 16% vs 93% +/- 18% and 120% +/- 25% vs. 135% +/- 23%, P < 0.01). Conclusions: Our results show that despite reduced muscle force, the combination of obesity and postmenopause may be associated with greater resistance to muscle fatigue.
Resumo:
Introduction. Physical exercise including pelvic floor muscle (PFM) training seems to improve the sexual function of women with urinary incontinence. This effect in postmenopausal women who are continent has not yet been determined. Aim. The aim of this study was to assess the effect of a 3-month physical exercise protocol (PEP) on the sexual function and mood of postmenopausal women. Methods. Thirty-two sedentary, continent, sexually active women who had undergone menopause no more than 5 years earlier and who had follicle stimulating hormone levels of at least 40 mIU/mL were enrolled into this longitudinal study. All women had the ability to contract their PFMs, as assessed by vaginal bimanual palpation. Muscle strength was graded according to the Oxford Modified Grading Scale (OMGS). A PEP was performed under the guidance of a physiotherapist (M. M. F.) twice weekly for 3 months and at home three times per week. All women completed the Sexual Quotient-Female Version (SQ-F) and the Hospital Anxiety and Depression Scale (HADS) before and after the PEP. Main Outcome Measures. SQ-F to assess sexual function, HASDS to assess mood, and OMGS to grade pelvic floor muscle strength. Results. Thirty-two women (24 married women, eight women in consensual unions) completed the PEP. Following the PEP, there was a significant increase in OMGS score (2.59 +/- 1.24 vs. 3.40 +/- 1.32, P < 0.0001) and a significant decrease in the number of women suffering from anxiety (P < 0.01), but there was no effect on sexual function. Conclusion. Implementation of our PEP seemed to reduce anxiety and improve pelvic floor muscular strength in sedentary and continent postmenopausal women. However, our PEP did not improve sexual function. Uncontrolled variables, such as participation in a long-term relationship and menopause status, may have affected our results. We suggest that a randomized controlled trial be performed to confirm our results. Lara LAS, Montenegro ML, Franco MM, Abreu DCC, Rosa e Silva ACJS, Ferreira CHJ. Is the sexual satisfaction of postmenopausal women enhanced by physical exercise and pelvic floor muscle training? J Sex Med 2012; 9: 218-223.
Resumo:
The current research compared resting heart rate variability (VFC) before and after 10 weeks of strength training in groups that used and did not use a vibration platform. Seventeen healthy men were divided into conventional strength training (TF) or strength training using a vibration platform with a frequency of 30 Hz (TF+V30) training groups. One repetition maximum load (1-RM) on half squat exercise and VFC measurements were determined pre- and post-training program. Both groups had improved 1-RM load after the program (15.1% in TF group and 16.4% in TF+V30 group), although this increase was changed in the same extent for the two groups and there was no difference in 1-RM load between groups pre- and post-training program. No significant difference was observed in resting VFC measurements between groups pre and post-training program, however the magnitude of the effect size was moderated (ES = 0.50-0.80) for some variables (R-R interval, standard deviation of all R-R interval - SDNN, RMSSD, log-transformed of low frequency - InLF, and log-transformed of high frequency - InHF) in TF+V30 group. It was concluded that 10 weeks of strength training program with or without the vibration platform provided similar increase in 1-RM load in both groups, and although some evidences in this study indicate that vibration can increase vagal activity analyzed by ES, in neither groups the strength training was able to change VFC significantly.
Resumo:
BACKGROUND: Nerve transfers or graft repairs in upper brachial plexus palsies are 2 available options for elbow flexion recovery. OBJECTIVE: To assess outcomes of biceps muscle strength when treated either by grafts or nerve transfer. METHODS: A standard supraclavicular approach was performed in all patients. When roots were available, grafts were used directed to proximal targets. Otherwise, a distal ulnar nerve fascicle was transferred to the biceps branch. Elbow flexion strength was measured with a dynamometer, and an index comparing the healthy arm and the operated-on side was developed. Statistical analysis to compare both techniques was performed. RESULTS: Thirty-five patients (34 men) were included in this series. Mean age was 28.7 years (standard deviation, 8.7). Twenty-two patients (62.8%) presented with a C5-C6 injury, whereas 13 patients (37.2%) had a C5-C6-C7 lesion. Seventeen patients received reconstruction with grafts, and 18 patients were treated with a nerve transfer from the ulnar nerve to the biceps. The trauma to surgery interval (mean, 7.6 months in both groups), strength in the healthy arm, and follow-up duration were not statistically different. On the British Medical Research Council muscle strength scale, 8 of 17 (47%) patients with a graft achieved >= M3 biceps flexion postoperatively, vs 16 of 18 (88%) post nerve transfers (P = .024). This difference persisted when a muscle strength index assessing improvement relative to the healthy limb was used (P = .031). CONCLUSION: The results obtained from ulnar nerve fascicle transfer to the biceps branch were superior to those achieved through reconstruction with grafts.
Resumo:
Background: The objective of this study was to analyze the muscle strength and endurance of the proximal and distal lower-extremity muscles in peripheral artery disease (PAD) patients. Methods: Twenty patients with bilateral PAD with symptoms of intermittent claudication and nine control subjects without PAD were included in the study, comprising 40 and 18 legs, respectively. All subjects performed an isokinetic muscle test to evaluate the muscle strength and endurance of the proximal (knee extension and knee flexion movements) and distal (plantar flexion and dorsiflexion movements) muscle groups in the lower extremity. Results: Compared with the control group, the PAD group presented lower muscle strength in knee flexion (-14.0%), dorsiflexion (-26.0%), and plantar flexion (-21.2%) movements (P < 0.05) but similar strength in knee extension movements (P > 0.05). The PAD patients presented a 13.5% lower knee flexion/extension strength ratio compared with the control subjects (P < 0.05), as well as lower muscle endurance in dorsiflexion (-28.1%) and plantar flexion (-17.0%) movements (P < 0.05). The muscle endurance in knee flexion and knee extension movements was similar between PAD patients and the control subjects (P > 0.05). Conclusion: PAD patients present lower proximal and distal muscle strength and lower distal muscle endurance than control patients. Therefore, interventions to improve muscle strength and endurance should be prescribed for PAD patients.
Resumo:
Study design: Cross-sectional. Objective: To analyze the relationships between functional tests, arm strength and root mean square of surface electromyography (EMG). Setting: Sao Paulo, Brazil. Methods: Twenty-four individuals with chronic tetraplegia participated. Upper extremity motor score (UEMS), functional independence measure (FIM) motor score, spinal cord independence measure III and capabilities of upper extremity (CUE) were performed. Muscle strength of the right elbow flexors-extensors was assessed using dynamometry and manual muscle test (MMT) and EMG of right biceps and triceps brachii were performed. Spearman's rank correlation coefficients and Mann-Whitney's U-test were used. Results: Functional tests and UEMS correlated strongly among them. UEMS highly correlated with triceps dynamometry and EMG. The dynamometry showed a very high correlation with MMT on the extensor group and a moderate correlation with flexor group. Triceps EMG showed moderate correlation with FIM and CUE. High correlations between triceps EMG and elbow extensors dynamometry and MMT were observed. A significant better performance on functional tests was observed on lower ASIA motor levels. The low-tetraplegia group showed a significant higher score on triceps EMG and dynamometry. Conclusion: Arm strength and EMG seem to be related to functional capabilities and independence in chronic tetraplegia. Spinal Cord (2012) 50, 28-32; doi:10.1038/sc.2011.95; published online 30 August 2011
Resumo:
Abstract Background This study compares the immediate effects of local and adjacent acupuncture on the tibialis anterior muscle and the amount of force generated or strength in Kilogram Force (KGF) evaluated by a surface electromyography. Methods The study consisted of a single blinded trial of 30 subjects assigned to two groups: local acupoint (ST36) and adjacent acupoint (SP9). Bipolar surface electrodes were placed on the tibialis anterior muscle, while a force transducer was attached to the foot of the subject and to the floor. An electromyograph (EMG) connected to a computer registered the KGF and root mean square (RMS) before and after acupuncture at maximum isometric contraction. The RMS values and surface electrodes were analyzed with Student's t-test. Results Thirty subjects were selected from a total of 56 volunteers according to specific inclusion and exclusion criteria and were assigned to one of the two groups for acupuncture. A significant decrease in the RMS values was observed in both ST36 (t = -3.80, P = 0,001) and SP9 (t = 6.24, P = 0.001) groups after acupuncture. There was a decrease in force in the ST36 group after acupuncture (t = -2.98, P = 0.006). The RMS values did not have a significant difference (t = 0.36, P = 0.71); however, there was a significant decrease in strength after acupuncture in the ST36 group compared to the SP9 group (t = 2.51, P = 0.01). No adverse events were found. Conclusion Acupuncture at the local acupoint ST36 or adjacent acupoints SP9 reduced the tibialis anterior electromyography muscle activity. However, acupuncture at SP9 did not decrease muscle strength while acupuncture at ST36 did.
Resumo:
The muscle has a wide range of possibilities to adapt its phenotype. Repetitive submaximal concentric exercise (i.e., shortening contractions) mainly leads to adaptations of muscle oxidative metabolism and endurance while eccentric exercise (i.e., lengthening contractions) results in muscle growth and gain of muscle strength. Modified gene expression is believed to mediate these exercise-specific muscle adjustments. In the present study, early alterations of the gene expression signature were monitored by a muscle-specific microarray. Transcript profiling was performed on muscle biopsies of vastus lateralis obtained from six male subjects before and in a 24-h time course after a single bout of mild eccentric ergometer exercise. The eccentric exercise consisted of 15 min of eccentric cycling at 50% of the individual maximal concentric power output leading to muscle soreness (5.9 on a 0-10 visual analogue scale) and limited muscle damage (1.7-fold elevated creatine kinase activity). Muscle impairment was highlighted by a transient reduction in jumping height after the eccentric exercise. On the gene expression level, we observed a general early downregulation of detected transcripts, followed by a slow recovery close to the control values within the first 24 h post exercise. Only very few regulatory factors were increased. This expression signature is different from the signature of a previously published metabolic response after an intensive endurance-type concentric exercise as well as after maximal eccentric exercise. This is the first description of the time course of changes in gene expression as a consequence of a mild eccentric stimulus.