916 resultados para Multispectral image processing
Resumo:
Coupled map lattices (CML) can describe many relaxation and optimization algorithms currently used in image processing. We recently introduced the ‘‘plastic‐CML’’ as a paradigm to extract (segment) objects in an image. Here, the image is applied by a set of forces to a metal sheet which is allowed to undergo plastic deformation parallel to the applied forces. In this paper we present an analysis of our ‘‘plastic‐CML’’ in one and two dimensions, deriving the nature and stability of its stationary solutions. We also detail how to use the CML in image processing, how to set the system parameters and present examples of it at work. We conclude that the plastic‐CML is able to segment images with large amounts of noise and large dynamic range of pixel values, and is suitable for a very large scale integration(VLSI) implementation.
Resumo:
Radio Simultaneous Location and Mapping (SLAM) consists of the simultaneous tracking of the target and estimation of the surrounding environment, to build a map and estimate the target movements within it. It is an increasingly exploited technique for automotive applications, in order to improve the localization of obstacles and the target relative movement with respect to them, for emergency situations, for example when it is necessary to explore (with a drone or a robot) environments with a limited visibility, or for personal radar applications, thanks to its versatility and cheapness. Until today, these systems were based on light detection and ranging (lidar) or visual cameras, high-accuracy and expensive approaches that are limited to specific environments and weather conditions. Instead, in case of smoke, fog or simply darkness, radar-based systems can operate exactly in the same way. In this thesis activity, the Fourier-Mellin algorithm is analyzed and implemented, to verify the applicability to Radio SLAM, in which the radar frames can be treated as images and the radar motion between consecutive frames can be covered with registration. Furthermore, a simplified version of that algorithm is proposed, in order to solve the problems of the Fourier-Mellin algorithm when working with real radar images and improve the performance. The INRAS RBK2, a MIMO 2x16 mmWave radar, is used for experimental acquisitions, consisting of multiple tests performed in Lab-E of the Cesena Campus, University of Bologna. The different performances of Fourier-Mellin and its simplified version are compared also with the MatchScan algorithm, a classic algorithm for SLAM systems.
Resumo:
Functional brain imaging techniques such as functional MRI (fMRI) that allow the in vivo investigation of the human brain have been exponentially employed to address the neurophysiological substrates of emotional processing. Despite the growing number of fMRI studies in the field, when taken separately these individual imaging studies demonstrate contrasting findings and variable pictures, and are unable to definitively characterize the neural networks underlying each specific emotional condition. Different imaging packages, as well as the statistical approaches for image processing and analysis, probably have a detrimental role by increasing the heterogeneity of findings. In particular, it is unclear to what extent the observed neurofunctional response of the brain cortex during emotional processing depends on the fMRI package used in the analysis. In this pilot study, we performed a double analysis of an fMRI dataset using emotional faces. The Statistical Parametric Mapping (SPM) version 2.6 (Wellcome Department of Cognitive Neurology, London, UK) and the XBAM 3.4 (Brain Imaging Analysis Unit, Institute of Psychiatry, Kings College London, UK) programs, which use parametric and non-parametric analysis, respectively, were used to assess our results. Both packages revealed that processing of emotional faces was associated with an increased activation in the brain`s visual areas (occipital, fusiform and lingual gyri), in the cerebellum, in the parietal cortex, in the cingulate cortex (anterior and posterior cingulate), and in the dorsolateral and ventrolateral prefrontal cortex. However, blood oxygenation level-dependent (BOLD) response in the temporal regions, insula and putamen was evident in the XBAM analysis but not in the SPM analysis. Overall, SPM and XBAM analyses revealed comparable whole-group brain responses. Further Studies are needed to explore the between-group compatibility of the different imaging packages in other cognitive and emotional processing domains. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Thesis submitted to the Instituto Superior de Estatística e Gestão de Informação da Universidade Nova de Lisboa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Information Management – Geographic Information Systems
Resumo:
Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into adulthood suggest ongoing structural alterations affecting frontostriatal circuits. Using cortical thickness estimation and voxel-based analysis of T1- and diffusion-weighted structural magnetic resonance images, we examined 40 adults with Tourette syndrome in comparison with 40 age- and gender-matched healthy controls. Patients with Tourette syndrome showed relative grey matter volume reduction in orbitofrontal, anterior cingulate and ventrolateral prefrontal cortices bilaterally. Cortical thinning extended into the limbic mesial temporal lobe. The grey matter changes were modulated additionally by the presence of co-morbidities and symptom severity. Prefrontal cortical thickness reduction correlated negatively with tic severity, while volume increase in primary somatosensory cortex depended on the intensity of premonitory sensations. Orbitofrontal cortex volume changes were further associated with abnormal water diffusivity within grey matter. White matter analysis revealed changes in fibre coherence in patients with Tourette syndrome within anterior parts of the corpus callosum. The severity of motor tics and premonitory urges had an impact on the integrity of tracts corresponding to cortico-cortical and cortico-subcortical connections. Our results provide empirical support for a patho-aetiological model of Tourette syndrome based on developmental abnormalities, with perturbation of compensatory systems marking persistence of symptoms into adulthood. We interpret the symptom severity related grey matter volume increase in distinct functional brain areas as evidence of ongoing structural plasticity. The convergence of evidence from volume and water diffusivity imaging strengthens the validity of our findings and attests to the value of a novel multimodal combination of volume and cortical thickness estimations that provides unique and complementary information by exploiting their differential sensitivity to structural change.
Resumo:
The standard data fusion methods may not be satisfactory to merge a high-resolution panchromatic image and a low-resolution multispectral image because they can distort the spectral characteristics of the multispectral data. The authors developed a technique, based on multiresolution wavelet decomposition, for the merging and data fusion of such images. The method presented consists of adding the wavelet coefficients of the high-resolution image to the multispectral (low-resolution) data. They have studied several possibilities concluding that the method which produces the best results consists in adding the high order coefficients of the wavelet transform of the panchromatic image to the intensity component (defined as L=(R+G+B)/3) of the multispectral image. The method is, thus, an improvement on standard intensity-hue-saturation (IHS or LHS) mergers. They used the ¿a trous¿ algorithm which allows the use of a dyadic wavelet to merge nondyadic data in a simple and efficient scheme. They used the method to merge SPOT and LANDSATTM images. The technique presented is clearly better than the IHS and LHS mergers in preserving both spectral and spatial information.
Resumo:
Usual image fusion methods inject features from a high spatial resolution panchromatic sensor into every low spatial resolution multispectral band trying to preserve spectral signatures and improve spatial resolution to that of the panchromatic sensor. The objective is to obtain the image that would be observed by a sensor with the same spectral response (i.e., spectral sensitivity and quantum efficiency) as the multispectral sensors and the spatial resolution of the panchromatic sensor. But in these methods, features from electromagnetic spectrum regions not covered by multispectral sensors are injected into them, and physical spectral responses of the sensors are not considered during this process. This produces some undesirable effects, such as resolution overinjection images and slightly modified spectral signatures in some features. The authors present a technique which takes into account the physical electromagnetic spectrum responses of sensors during the fusion process, which produces images closer to the image obtained by the ideal sensor than those obtained by usual wavelet-based image fusion methods. This technique is used to define a new wavelet-based image fusion method.
Resumo:
Peer-reviewed
Resumo:
The usage of digital content, such as video clips and images, has increased dramatically during the last decade. Local image features have been applied increasingly in various image and video retrieval applications. This thesis evaluates local features and applies them to image and video processing tasks. The results of the study show that 1) the performance of different local feature detector and descriptor methods vary significantly in object class matching, 2) local features can be applied in image alignment with superior results against the state-of-the-art, 3) the local feature based shot boundary detection method produces promising results, and 4) the local feature based hierarchical video summarization method shows promising new new research direction. In conclusion, this thesis presents the local features as a powerful tool in many applications and the imminent future work should concentrate on improving the quality of the local features.
Resumo:
In this work an image pre-processing module has been developed to extract quantitative information from plantation images with various degrees of infestation. Four filters comprise this module: the first one acts on smoothness of the image, the second one removes image background enhancing plants leaves, the third filter removes isolated dots not removed by the previous filter, and the fourth one is used to highlight leaves' edges. At first the filters were tested with MATLAB, for a quick visual feedback of the filters' behavior. Then the filters were implemented in the C programming language. At last, the module as been coded in VHDL for the implementation on a Stratix II family FPGA. Tests were run and the results are shown in this paper. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
Once admitted the advantages of object-based classification compared to pixel-based classification; the need of simple and affordable methods to define and characterize objects to be classified, appears. This paper presents a new methodology for the identification and characterization of objects at different scales, through the integration of spectral information provided by the multispectral image, and textural information from the corresponding panchromatic image. In this way, it has defined a set of objects that yields a simplified representation of the information contained in the two source images. These objects can be characterized by different attributes that allow discriminating between different spectral&textural patterns. This methodology facilitates information processing, from a conceptual and computational point of view. Thus the vectors of attributes defined can be used directly as training pattern input for certain classifiers, as for example artificial neural networks. Growing Cell Structures have been used to classify the merged information.
Resumo:
We propose to directly process 3D + t image sequences with mathematical morphology operators, using a new classi?cation of the 3D+t structuring elements. Several methods (?ltering, tracking, segmentation) dedicated to the analysis of 3D + t datasets of zebra?sh embryogenesis are introduced and validated through a synthetic dataset. Then, we illustrate the application of these methods to the analysis of datasets of zebra?sh early development acquired with various microscopy techniques. This processing paradigm produces spatio-temporal coherent results as it bene?ts from the intrinsic redundancy of the temporal dimension, and minimizes the needs for human intervention in semi-automatic algorithms.
Resumo:
Purpose-To develop a non-invasive method for quantification of blood and pigment distributions across the posterior pole of the fundus from multispectral images using a computer-generated reflectance model of the fundus. Methods - A computer model was developed to simulate light interaction with the fundus at different wavelengths. The distribution of macular pigment (MP) and retinal haemoglobins in the fundus was obtained by comparing the model predictions with multispectral image data at each pixel. Fundus images were acquired from 16 healthy subjects from various ethnic backgrounds and parametric maps showing the distribution of MP and of retinal haemoglobins throughout the posterior pole were computed. Results - The relative distributions of MP and retinal haemoglobins in the subjects were successfully derived from multispectral images acquired at wavelengths 507, 525, 552, 585, 596, and 611?nm, providing certain conditions were met and eye movement between exposures was minimal. Recovery of other fundus pigments was not feasible and further development of the imaging technique and refinement of the software are necessary to understand the full potential of multispectral retinal image analysis. Conclusion - The distributions of MP and retinal haemoglobins obtained in this preliminary investigation are in good agreement with published data on normal subjects. The ongoing development of the imaging system should allow for absolute parameter values to be computed. A further study will investigate subjects with known pathologies to determine the effectiveness of the method as a screening and diagnostic tool.