943 resultados para Multiplicative noise
Resumo:
Guitar technology underwent significant changes in the 20th century in the move from acoustic to electric instruments. In the first part of the 21st century, the guitar continues to develop through its interaction with digital technologies. Such changes in guitar technology are usually grounded in what we might call the "cultural identity" of the instrument: that is, the various ways that the guitar is used to enact, influence and challenge sociocultural and musical discourses. Often, these different uses of the guitar can be seen to reflect a conflict between the changing concepts of "noise" and "musical sound."
Resumo:
Several significant studies have been made in recent decades toward understanding road traffic noise and its effects on residential balconies. These previous studies have used a variety of techniques such as theoretical models, scale models and measurements on real balconies. The studies have considered either road traffic noise levels within the balcony space or inside an adjacent habitable room or both. Previous theoretical models have used, for example, simplified specular reflection calculations, boundary element methods (BEM), adaptations of CoRTN or the use of Sabine Theory. This paper presents an alternative theoretical model to predict the effects of road traffic noise spatially within the balcony space. The model includes a specular reflection component by calculating up to 10 orders of source images. To account for diffusion effects, a two compartment radiosity component is utilised. The first radiosity compartment is the urban street, represented as a street with building facades on either side. The second radiosity compartment is the balcony space. The model is designed to calculate the predicted road traffic noise levels within the balcony space and is capable of establishing the effect of changing street and balcony geometries. Screening attenuation algorithms are included to determine the effects of solid balcony parapets and balcony ceiling shields.
Resumo:
Rolling Element Bearings (REBs) are vital components in rotating machineries for providing rotating motion. In slow speed rotating machines, bearings are normally subjected to heavy static loads and a catastrophic failure can cause enormous disruption to production and human safety. Due to its low operating speed the impact energy generated by the rotating elements on the defective components is not sufficient to produce a detectable vibration response. This is further aggravated by the inability of general measuring instruments to detect and process the weak signals at the initiation of the defect accurately. Furthermore, the weak signals are often corrupted by background noise. This is a serious problem faced by maintenance engineers today and the inability to detect an incipient failure of the machine can significantly increases the risk of functional failure and costly downtime. This paper presents the application of noise removal techniques for enhancing the detection capability for slow speed REB condition monitoring. Blind deconvolution (BD) and adaptive line enhancer (ALE) are compared to evaluate their performance in enhancing the source signal with consequential removal of background noise. In the experimental study, incipient defects were seeded on a number of roller bearings and the signals were acquired using acoustic emission (AE) sensor. Kurtosis and modified peak ratio (mPR) were used to determine the detectability of signal corrupted by noise.
Resumo:
A method is proposed to describe force or compound muscle action potential (CMAP) trace data collected in an electromyography study for motor unit number estimation (MUNE). Experimental data was collected using incre- mental stimulation at multiple durations. However, stimulus information, vital for alternate MUNE methods, is not comparable for multiple duration data and therefore previous methods of MUNE (Ridall et al., 2006, 2007) cannot be used with any reliability. Hypothesised ring combinations of motor units are mod- elled using a multiplicative factor and Bayesian P-spline formulation. The model describes the process for force and CMAP in a meaningful way.
Resumo:
This was a catalogue essay for the emerging Brisbane artist Sarah Byrne's exhibition Trenchmouth at MetroArts from 31st October until 21st November 2009. The essay contextualised her practice in the history of experimental soundart and discussed her methods of practice and approach to sound from the postion of a multi-discplinary artist.The essay also discussed the way in which her practice engages with and recontextualises camp, trash, and lo-fi aspects of popular culture
Resumo:
In this paper conditional hidden Markov model (HMM) filters and conditional Kalman filters (KF) are coupled together to improve demodulation of differential encoded signals in noisy fading channels. We present an indicator matrix representation for differential encoded signals and the optimal HMM filter for demodulation. The filter requires O(N3) calculations per time iteration, where N is the number of message symbols. Decision feedback equalisation is investigated via coupling the optimal HMM filter for estimating the message, conditioned on estimates of the channel parameters, and a KF for estimating the channel states, conditioned on soft information message estimates. The particular differential encoding scheme examined in this paper is differential phase shift keying. However, the techniques developed can be extended to other forms of differential modulation. The channel model we use allows for multiplicative channel distortions and additive white Gaussian noise. Simulation studies are also presented.
Resumo:
In traditional communication and information theory, noise is the demon Other, an unwelcome disruption in the passage of information. Noise is "anything that is added to the signal between its transmission and reception that is not intended by the source...anything that makes the intended signal harder to decode accurately". It is in Michel Serres' formulation, the "third man" in dialogue who is always assumed, and whom interlocutors continually struggle to exclude. Noise is simultaneously a condition and a by-product of the act of communication, it represents the ever present possibility of disruption, interruption, misunderstanding. In sonic or musical terms noise is cacophony, dissonance. For economists, noise is an arbitrary element, both a barrier to the pursuit of wealth and a basis for speculation. For Mick (Jeremy Sims) and his mate Kev (Ben Mendelsohn) in David Caesar's Idiot Box (1996), as for Hando (Russell Crowe) and his gang of skinheads in Geoffrey Wright's Romper Stomper (1992), or Dazey (Ben Mendelsohn) and Joe (Aden Young) in Wright's Metal Skin (1994) and all those like them starved of (useful) information and excluded from the circuit - the information poor - their only option, their only point of intervention in the loop, is to make noise, to disrupt, to discomfort, to become Serres' "third man", "the prosopopoeia of noise" (5).
Resumo:
An investigation into the spatial distribution of road traffic noise levels on a balcony is conducted. A balcony constructed to a special acoustic design due to its elevation above an 8 lane motorway is selected for detailed measurements. The as-constructed balcony design includes solid parapets, side walls, ceiling shields and highly absorptive material placed on the ceiling. Road traffic noise measurements are conducted spatially using a five channel acoustic analyzer, where four microphones are located at various positions within the balcony space and one microphone placed outside the parapet at a reference position. Spatial distributions in both vertical and horizontal planes are measured. A theoretical model and prediction configuration is presented that assesses the acoustic performance of the balcony under existing traffic flow conditions. The prediction model implements a combined direct path, specular reflection path and diffuse reflection path utilizing image source and radiosity techniques. Results obtained from the prediction model are presented and compared to the measurement results. The predictions are found to correlate well with measurements with some minor differences that are explained. It is determined that the prediction methodology is acceptable to assess a wider range of street and balcony configuration scenarios.
Resumo:
The low- and high-frequency components of a rustling sound, created when prey (freshly killed frog) was jerkily pulled on dry and wet sandy floors and asbestos, were recorded and played back to individual Indian false vampire bats (Megaderma lyra). Megaderma lyra responded with flight toward the speakers and captured dead frogs, that were kept as reward. The spectral peaks were at 8.6, 7.1 and 6.8 kHz for the low-frequency components of the sounds created at the dry, asbestos and wet floors, respectively. The spectral peaks for the high-frequency sounds created on the respective floors were at 36.8,27.2 and 23.3 kHz. The sound from the dry floor was more intense than that of from the other two substrata. Prey movements that generated sonic or ultrasonic sounds were both sufficient and necessary for the bats to detect and capture prey. The number of successful prey captures was significantly greater for the dry floor sound, especially to its high-frequency components. Bat-responses were low to the wet floor and moderate to the asbestos floor sounds. The bats did not respond to the sound of unrecorded parts of the tape. Even though the bats flew toward the speakers when the prey generated sounds were played back and captured the dead frogs we cannot rule out the possibility of M. lyra using echolocation to localize prey. However, the study indicates that prey that move on dry sandy floor are more vulnerable to predation by M. lyra.
Resumo:
We contribute an empirically derived noise model for the Kinect sensor. We systematically measure both lateral and axial noise distributions, as a function of both distance and angle of the Kinect to an observed surface. The derived noise model can be used to filter Kinect depth maps for a variety of applications. Our second contribution applies our derived noise model to the KinectFusion system to extend filtering, volumetric fusion, and pose estimation within the pipeline. Qualitative results show our method allows reconstruction of finer details and the ability to reconstruct smaller objects and thinner surfaces. Quantitative results also show our method improves pose estimation accuracy. © 2012 IEEE.
Resumo:
Corner detection has shown its great importance in many computer vision tasks. However, in real-world applications, noise in the image strongly affects the performance of corner detectors. Few corner detectors have been designed to be robust to heavy noise by now, partly because the noise could be reduced by a denoising procedure. In this paper, we present a corner detector that could find discriminative corners in images contaminated by noise of different levels, without any denoising procedure. Candidate corners (i.e., features) are firstly detected by a modified SUSAN approach, and then false corners in noise are rejected based on their local characteristics. Features in flat regions are removed based on their intensity centroid, and features on edge structures are removed using the Harris response. The detector is self-adaptive to noise since the image signal-to-noise ratio (SNR) is automatically estimated to choose an appropriate threshold for refining features. Experimental results show that our detector has better performance at locating discriminative corners in images with strong noise than other widely used corner or keypoint detectors.
Resumo:
Smart Card Automated Fare Collection (AFC) data has been extensively exploited to understand passenger behavior, passenger segment, trip purpose and improve transit planning through spatial travel pattern analysis. The literature has been evolving from simple to more sophisticated methods such as from aggregated to individual travel pattern analysis, and from stop-to-stop to flexible stop aggregation. However, the issue of high computing complexity has limited these methods in practical applications. This paper proposes a new algorithm named Weighted Stop Density Based Scanning Algorithm with Noise (WS-DBSCAN) based on the classical Density Based Scanning Algorithm with Noise (DBSCAN) algorithm to detect and update the daily changes in travel pattern. WS-DBSCAN converts the classical quadratic computation complexity DBSCAN to a problem of sub-quadratic complexity. The numerical experiment using the real AFC data in South East Queensland, Australia shows that the algorithm costs only 0.45% in computation time compared to the classical DBSCAN, but provides the same clustering results.