893 resultados para Multiple drug resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian cells express 7 β-tubulin isotypes in a tissue specific manner. This has long fueled the speculation that different isotypes carry out different functions. To provide direct evidence for their functional significance, class III, IVa, and VI β-tubulin cDNAs were cloned into a tetracycline regulated expression vector and stably transfected Chinese hamster ovary cell lines expressing different levels of ectopic β-tubulin were compared for effects on microtubule organization, microtubule assembly and sensitivity to antimitotic drugs. It was found that all three isotypes coassembled with endogenous β-tubulin. βVI expression caused distinct microtubule rearrangements including microtubule dissociation from the centrosome and accumulation at the cell periphery; whereas expression of βIII and βVIa caused no observable changes in the interphase microtubule network. Overexpression of all 3 isotypes caused spindle malformation and mitotic defects. Both βIII and βIVa disrupted microtubule assembly in proportion to their abundance and thereby conferred supersensitivity to microtubule depolymerizing drugs. In contrast, βVI stabilized microtubules at low stoichiometry and thus conferred resistance to many microtubule destabilizing drugs but not vinblastine. The 3 isotypes caused differing responses to microtubule stabilizing drugs. Expression of βIII conferred paclitaxel resistance while βVI did not. Low expression of βIVa caused supersensitivity to paclitaxel, whereas higher expression resulted in the loss of supersensitivity. The results suggest that βIVa may possess an enhanced ability to bind paclitaxel that increases sensitivity to the drug and acts substoichiometrically. At high levels of βVIa expression, however, microtubule disruptive effects counteract the assembly promoting pressure exerted by increased paclitaxel binding, and drug supersensitivity is lost. From this study, I concluded that β-tubulin isotypes behave differently from each other in terms of microtubule organization, microtubule assembly and dynamics, and antimitotic drug sensitivity. The isotype composition of cell can impart subtle to dramatic effects on the properties of microtubules leading to potential functional consequences and opening the opportunity to exploit differences in microtubule isotype composition for therapeutic gain. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanisms responsible for anti-cancer drug (including Taxol) treatment failure have not been identified. In cell culture model systems, many β-tubulin, but very few α-tubulin, mutations have been associated with resistance to Taxol. To test what, if any, mutations in α-tubulin can cause resistance, we transfected a randomly mutagenized α-tubulin cDNA into Chinese hamster ovary (CHO) cells and isolated drug resistant cell lines. A total of 12 mutations were identified in this way and all of them were confirmed to confer Taxol resistance. Furthermore, all cells expressing mutant α-tubulin had less microtubule polymer. Some cells also had abnormal nuclei and enlarged cell bodies. The data indicate that α-tubulin mutations confer Taxol resistance by disrupting microtubule assembly, a mechanism consistent with a large number of previously described β-tubulin mutations. ^ Because α- and β-tubulin are almost identical in their three dimensional structure, we hypothesized that mutations discovered in one subunit, when introduced into the other, would produce similar effects on microtubule assembly and drug resistance. 9 α- and 2 β-tubulin mutations were tested. The results were complex. Some mutations produced similar changes in microtubule assembly and drug resistance irrespective of the subunit in which they were introduced, but others produced opposite effects. Still one mutation produced resistance when present in one subunit, yet had no effect when present on the other; and one mutation that produced Taxol resistance when present in α-tubulin, resulted in assembly-defective tubulin when it was present in β-tubulin. The results suggest that in most cases, the same amino acid modification in α- and β-tubulin affects the microtubule structure and assembly in a similar way. ^ Finally, we tested whether three β-tubulin mutations found in patient tumors could confer resistance to Taxol by recreating the mutations in a β-tubulin cDNA and transfecting it into CHO cells. We found that all three mutations conferred Taxol resistance, but to different extents. Again, microtubule assembly in the transfectants was disrupted, suggesting that mutations in β-tubulin are a potential problem in cancer therapeutics. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vietnam is one of the countries with the highest prevalence and incidence of tuberculosis (TB) in the world (1). Although Vietnam has had many successes in TB control, it still faces the challenge of drug resistant and multidrug-resistant tuberculosis (MDR-TB). MDR-TB appears to be relatively stable, but data on MDR-TB continues to be scarce and routine testing of all isolates for drug susceptibility is not performed under Vietnam's National Tuberculosis Program (6). Pham Ngoc Thach Hospital (PNT), the leading tuberculosis and lung disease hospital in Ho Chi Minh City, serves as a reference hospital and laboratory for both Ho Chi Minh City and the Southern Vietnam region. This study is an unmatched, nested case-control study consisting of a secondary analysis of a previously created dataset composed of drug susceptibility and basic demographic data from a cohort of patients diagnosed with tuberculosis at PNT from 2003 through 2007 in order to calculate the prevalence of resistance among acid-fast bacilli smear-positive patients. The susceptibility records for the years 2003-2004 were not representative of the entire population, but over the years 2005-2007 the investigator found a decrease in resistance to all primary TB drugs on which records were available, as well as MDR-TB. Overall, females showed a higher proportion of resistance to TB drugs than males, and females had a greater likelihood of presenting with MDR-TB than males (OR=1.77). Persons 35-54 had greater likelihood of having MDR-TB than younger and older age groups. Among the population with HIV data, HIV-positivity was associated with greater likelihood of MDR-TB (OR=1.70, 95% CI=0.97-3.11). This study shows that rates of TB drug resistance are high, but declining, in one of Vietnam's largest TB hospitals, and that females and HIV-positive individuals are possible high-risk groups in this population.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over 1.2 million Americans are currently living with a traumatic spinal cord injury (SCI). Despite the need for effective therapies, there are currently no proven effective treatments that can improve recovery of function in SCI patients. Many therapeutic compounds have shown promise in preclinical models of SCI, but all of these have fallen short in clinical trials. P-glycoprotein (Pgp) is an active transporter expressed on capillary endothelial cell membranes at the blood-spinal cord barrier (BSCB). Pgp limits passive diffusion of blood-borne drugs into the CNS, by actively extruding drugs from the endothelial cell membrane. Pgp can become pathologically up-regulated, thus greatly impeding therapeutic drug delivery (‘multidrug resistance’). Importantly, many drugs that have been evaluated for the treatment of SCI are Pgp substrates. We hypothesized that Pgp-mediated drug resistance diminishes the delivery and efficacy of neuroprotective drugs following SCI. We observed a progressive, spatial spread of Pgp overexpression within the injured spinal cord. To assess Pgp function, we examined spinal cord uptake of systemically-delivered riluzole, a drug that is currently being evaluated in clinical trials as an SCI intervention. Blood-to-spinal cord riluzole penetration was reduced following SCI in wild-type but not Pgp-null rats, highlighting a critical role for Pgp in mediating spinal cord drug resistance after injury. Others have shown that pro-inflammatory signaling drives Pgp up-regulation in cancer and epilepsy. We have detected inflammation in both acutely- and chronically-injured spinal cord tissue. We therefore evaluated the ability of the dual COX-/5-LOX inhibitor licofelone to attenuate Pgp-mediated drug resistance following SCI. Licofelone treatment both reduced spinal cord Pgp levels and enhanced spinal cord riluzole bioavailability following SCI. Thus, we propose that licofelone may offer a new combinatorial treatment strategy to enhance spinal cord drug delivery following SCI. Additionally, we assessed the ability of licofelone, riluzole, or both to enhance recovery of locomotor function following SCI. We found that licofelone treatment conferred a significant improvement in hindlimb function that was sustained through the end of the study. In contrast, riluzole did not improve functional outcome. We therefore conclude that licofelone holds promise as a potential neuroprotective intervention for SCI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To improve cancer chemotherapy, a better understanding of the molecular mechanisms of drug resistance is essential. To identify the molecules responsible for drug resistance that is unrelated to MDR1 or MRP gene products, a eukaryotic expression cDNA library of cis-diamminedichloroplatinum(II) (CDDP)-resistant ovarian cancer TYKnuR cells was introduced into Cos-7 cells. After repeated CDDP selection, cDNA homologous to murine semaphorin E was isolated from surviving cells. Human semaphorin E (H-sema E) was overexpressed in CDDP-resistant cell lines and was readily induced not only by diverse chemotherapeutic drugs but also by x-ray and UV irradiation. Transfection of H-sema E conferred a drug-resistant phenotype to CDDP-sensitive cells. In addition, the aberrant expression of H-sema E protein was detected immunohistochemically in 14 of 42 (33.3%) recurrent squamous cell carcinomas removed at autopsy after extensive radiochemotherapy. Recently, another member of the semaphorin family, CD100, was shown to significantly improve the viability of B lymphocytes. These results suggest the involvement of semaphorins in diverse cell survival mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leishmania parasites lack a purine biosynthetic pathway and depend on surface nucleoside and nucleobase transporters to provide them with host purines. Leishmania donovani possess two closely related genes that encode high affinity adenosine-pyrimidine nucleoside transporters LdNT1.1 and LdNT1.2 and that transport the toxic adenosine analog tubercidin in addition to the natural substrates. In this study, we have characterized a drug-resistant clonal mutant of L. donovani (TUBA5) that is deficient in LdNT1 transport and consequently resistant to tubercidin. In TUBA5 cells, the LdNT1.2 genes had the same sequence as wild-type cells. However, because LdNT1.2 mRNA is not detectable in either wild-type or TUBA5 promastigotes, LdNT1.2 does not contribute to nucleoside transport in this stage of the life cycle. In contrast, the TUBA5 cells were compound heterozygotes at the LdNT1.1 locus containing two mutant alleles that encompassed distinct point mutations, each of which impaired transport function. One of the mutant LdNT1.1 alleles encoded a G183D substitution in predicted TM 5, and the other allele contained a C337Y change in predicted TM 7. Whereas G183D and C337Y mutants had only slightly elevated adenosine Km values, the severe impairment in transport resulted from drastically (≈20-fold) reduced Vmax values. Because these transporters were correctly targeted to the plasma membrane, the reduction in Vmax apparently resulted from a defect in translocation. Strikingly, G183 was essential for pyrimidine nucleoside but not adenosine transport. A mutant transporter with a G183A substitution had an altered substrate specificity, exhibiting robust adenosine transport but undetectable uridine uptake. These results suggest that TM 5 is likely to form part of the nucleoside translocation pathway in LdNT1.1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential contribution of recombination to the development of HIV-1 resistance to multiple drugs was investigated. Two distinct viruses, one highly resistant to a protease inhibitor (SC-52151) and the other highly resistant to zidovudine, were used to coinfect T lymphoblastoid cells in culture. The viral genotypes could be distinguished by four mutations conferring drug resistance to each drug and by other sequence differences specific for each parental virus. Progeny virions recovered from mixed infection were passaged in the presence and absence of both zidovudine and SC-52151. Dually resistant mutants emerged rapidly under selective conditions, and these viruses were genetic recombinants. These results emphasize that genetic recombination could contribute to high-level multiple-drug resistance and that this process must be considered in chemotherapeutic strategies for HIV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated expression of the marORAB multiple antibiotic-resistance operon enhances the resistance of Escherichia coli to various medically significant antibiotics. Transcription of the operon is repressed in vivo by the marR-encoded protein, MarR, and derepressed by salicylate and certain antibiotics. The possibility that repression results from MarR interacting with the marO operator-promoter region was studied in vitro using purified MarR and a DNA fragment containing marO. MarR formed at least two complexes with marO DNA, bound > 30-fold more tightly to it than to salmon sperm DNA, and protected two separate 21-bp sites within marO from digestion by DNase I. Site I abuts the downstream side of the putative -35 transcription-start signal and includes 4 bp of the -10 signal. Site II begins 13 bp downstream of site I, ending immediately before the first base pair of marR. Site II, approximately 80% homologous to site I, is not required for repression since a site II-deleted mutant (marO133) was repressed in trans by wild-type MarR. The absence of site II did not prevent MarR from complexing with the site I of marO133. Salicylate bound to MarR (Kd approximately 0.5 mM) and weakened the interaction of MarR with sites I and II. Thus, repression of the mar operon, which curbs the antibiotic resistance of E. coli, correlates with the formation of MarR-site I complexes. Salicylate appears to induce the mar operon by binding to MarR and inhibiting complex formation, whereas tetracycline and chloramphenicol, which neither bind MarR nor inhibit complex formation, must induce by an indirect mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galvao, D.A., and D.R. Taaffe. Single- vs. multiple-set resistance training: recent developments in the controversy. J. Strength Cond. Res. 18(3):660-667. 2004.-The number of sets in a resistance training program remains a major point of discussion and controversy. Studies prior to 1998 demonstrated inconsistent findings between single-set and multiple-set programs; however, recent evidence suggests that multiple sets promote additional benefits following short- and long-term training. The rationale supporting multiple sets is that the number of sets is part of the exercise volume equation, and the volume of exercise is crucial in producing the stimulus necessary to elicit specific physiological adaptations. The purpose of this paper is to present an overview of recent resistance training studies comparing single and multiple sets. However, it should be noted that studies to date have been conducted in young and middle-aged adults, and it remains to be determined if the additional benefits accrued with multiple-set training also occurs for older adults, especially the frail elderly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multicopy var gene family encoding the variant surface antigen Plasmodium falciparum erythrocyte membrane protein 1 is highly diverse, with little overlap between different P. falciparum isolates. We report 5 var genes (varS1-varS5) that are shared at relatively high frequency among 63 genetically diverse P. falciparum isolates collected from 5 islands in the West Pacific region. The varS1, varS2, and varS3 genes were localized to the internal region on chromosome 4, similar to 200 kb from pfdhfr-ts, whereas varS4 and varS5 were mapped to an internal region of chromosome 7, within 100 kb of pfcrt. The presence of varS2 and varS3 were significantly correlated with the pyrimethamine-resistant pfdhfr genotype, whereas varS4 was strongly correlated with the chloroquine-resistant pfcrt genotype. Thus, the conservation of these var genes is the result of their physical linkage with drug-resistant genes in combination with the antimalarial drug pressure in the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: Prevalence studies indicate that transmission of drug-resistant HIV has been rising in the adult population, but data from the perinatally infected pediatric population are limited. In this retrospective study, we sequenced the pol region of HIV from perinatally infected infants diagnosed in New York State in 2001-2002. Analyses of drug resistance, subtype diversity, and perinatal antiretroviral exposure were conducted, and the results were compared with those from a previous study of HIV-infected infants identified in 1998-1999. Eight of 42 infants (19.1%) had provirus carrying at least 1 drug-resistance mutation, an increase of 58% over the 1998-1999 results. Mutations conferring resistance to nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and protease inhibitors were detected in 7.1%, 11.9%, and 2.4% of specimens, respectively. Consistent with previous results, perinatal antiretroviral exposure was not associated with drug resistance (P = 0.70). Phylogenetic analysis indicated that 16.7% of infants were infected with a non-subtype B strain of HIV. It seems that drug-resistant and non-subtype B strains of HIV are becoming increasingly common in the perinatally infected population. Our results highlight the value of resistance testing for all HIV-infected infants upon diagnosis and the need to consider subtype diversity in diagnostic and treatment strategies.