887 resultados para Multiple data


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In medicine, innovation depends on a better knowledge of the human body mechanism, which represents a complex system of multi-scale constituents. Unraveling the complexity underneath diseases proves to be challenging. A deep understanding of the inner workings comes with dealing with many heterogeneous information. Exploring the molecular status and the organization of genes, proteins, metabolites provides insights on what is driving a disease, from aggressiveness to curability. Molecular constituents, however, are only the building blocks of the human body and cannot currently tell the whole story of diseases. This is why nowadays attention is growing towards the contemporary exploitation of multi-scale information. Holistic methods are then drawing interest to address the problem of integrating heterogeneous data. The heterogeneity may derive from the diversity across data types and from the diversity within diseases. Here, four studies conducted data integration using customly designed workflows that implement novel methods and views to tackle the heterogeneous characterization of diseases. The first study devoted to determine shared gene regulatory signatures for onco-hematology and it showed partial co-regulation across blood-related diseases. The second study focused on Acute Myeloid Leukemia and refined the unsupervised integration of genomic alterations, which turned out to better resemble clinical practice. In the third study, network integration for artherosclerosis demonstrated, as a proof of concept, the impact of network intelligibility when it comes to model heterogeneous data, which showed to accelerate the identification of new potential pharmaceutical targets. Lastly, the fourth study introduced a new method to integrate multiple data types in a unique latent heterogeneous-representation that facilitated the selection of important data types to predict the tumour stage of invasive ductal carcinoma. The results of these four studies laid the groundwork to ease the detection of new biomarkers ultimately beneficial to medical practice and to the ever-growing field of Personalized Medicine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The performance of three analytical methods for multiple-frequency bioelectrical impedance analysis (MFBIA) data was assessed. The methods were the established method of Cole and Cole, the newly proposed method of Siconolfi and co-workers and a modification of this procedure. Method performance was assessed from the adequacy of the curve fitting techniques, as judged by the correlation coefficient and standard error of the estimate, and the accuracy of the different methods in determining the theoretical values of impedance parameters describing a set of model electrical circuits. The experimental data were well fitted by all curve-fitting procedures (r = 0.9 with SEE 0.3 to 3.5% or better for most circuit-procedure combinations). Cole-Cole modelling provided the most accurate estimates of circuit impedance values, generally within 1-2% of the theoretical values, followed by the Siconolfi procedure using a sixth-order polynomial regression (1-6% variation). None of the methods, however, accurately estimated circuit parameters when the measured impedances were low (<20 Omega) reflecting the electronic limits of the impedance meter used. These data suggest that Cole-Cole modelling remains the preferred method for the analysis of MFBIA data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The 16S rRNA gene (16S rDNA) is currently the most widely used gene for estimating the evolutionary history of prokaryotes, To date, there are more than 30 000 16S rDNA sequences available from the core databases, GenBank, EMBL and DDBJ, This great number may cause a dilemma when composing datasets for phylogenetic analysis, since the choice and number of reference organisms are known to affect the resulting tree topology. A group of sequences appearing monophyletic in one dataset may not be so in another. This can be especially problematic when establishing the relationships of distantly related sequences at the division (phylum) level. In this study, a multiple-outgroup approach to resolving division-level phylogenetic relationships is suggested using 16S rDNA data. The approach is illustrated by two case studies concerning the monophyly of two recently proposed bacterial divisions, OP9 and OP10.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the scale of a field site represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed downscaling procedure based on a non-linear Bayesian sequential simulation approach. The main objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity logged at collocated wells and surface resistivity measurements, which are available throughout the studied site. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariatekernel density function. Then a stochastic integration of low-resolution, large-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities is applied. The overall viability of this downscaling approach is tested and validated by comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure allows obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this work is to establish a relationship between schistosomiasis prevalence and social-environmental variables, in the state of Minas Gerais, Brazil, through multiple linear regression. The final regression model was established, after a variables selection phase, with a set of spatial variables which contains the summer minimum temperature, human development index, and vegetation type variables. Based on this model, a schistosomiasis risk map was built for Minas Gerais.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Planners in public and private institutions would like coherent forecasts of the components of age-specic mortality, such as causes of death. This has been di cult toachieve because the relative values of the forecast components often fail to behave ina way that is coherent with historical experience. In addition, when the group forecasts are combined the result is often incompatible with an all-groups forecast. It hasbeen shown that cause-specic mortality forecasts are pessimistic when compared withall-cause forecasts (Wilmoth, 1995). This paper abandons the conventional approachof using log mortality rates and forecasts the density of deaths in the life table. Sincethese values obey a unit sum constraint for both conventional single-decrement life tables (only one absorbing state) and multiple-decrement tables (more than one absorbingstate), they are intrinsically relative rather than absolute values across decrements aswell as ages. Using the methods of Compositional Data Analysis pioneered by Aitchison(1986), death densities are transformed into the real space so that the full range of multivariate statistics can be applied, then back-transformed to positive values so that theunit sum constraint is honoured. The structure of the best-known, single-decrementmortality-rate forecasting model, devised by Lee and Carter (1992), is expressed incompositional form and the results from the two models are compared. The compositional model is extended to a multiple-decrement form and used to forecast mortalityby cause of death for Japan

Relevância:

40.00% 40.00%

Publicador:

Resumo:

”compositions” is a new R-package for the analysis of compositional and positive data.It contains four classes corresponding to the four different types of compositional andpositive geometry (including the Aitchison geometry). It provides means for computation,plotting and high-level multivariate statistical analysis in all four geometries.These geometries are treated in an fully analogous way, based on the principle of workingin coordinates, and the object-oriented programming paradigm of R. In this way,called functions automatically select the most appropriate type of analysis as a functionof the geometry. The graphical capabilities include ternary diagrams and tetrahedrons,various compositional plots (boxplots, barplots, piecharts) and extensive graphical toolsfor principal components. Afterwards, ortion and proportion lines, straight lines andellipses in all geometries can be added to plots. The package is accompanied by ahands-on-introduction, documentation for every function, demos of the graphical capabilitiesand plenty of usage examples. It allows direct and parallel computation inall four vector spaces and provides the beginner with a copy-and-paste style of dataanalysis, while letting advanced users keep the functionality and customizability theydemand of R, as well as all necessary tools to add own analysis routines. A completeexample is included in the appendix

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Imaging mass spectrometry (IMS) represents an innovative tool in the cancer research pipeline, which is increasingly being used in clinical and pharmaceutical applications. The unique properties of the technique, especially the amount of data generated, make the handling of data from multiple IMS acquisitions challenging. This work presents a histology-driven IMS approach aiming to identify discriminant lipid signatures from the simultaneous mining of IMS data sets from multiple samples. The feasibility of the developed workflow is evaluated on a set of three human colorectal cancer liver metastasis (CRCLM) tissue sections. Lipid IMS on tissue sections was performed using MALDI-TOF/TOF MS in both negative and positive ionization modes after 1,5-diaminonaphthalene matrix deposition by sublimation. The combination of both positive and negative acquisition results was performed during data mining to simplify the process and interrogate a larger lipidome into a single analysis. To reduce the complexity of the IMS data sets, a sub data set was generated by randomly selecting a fixed number of spectra from a histologically defined region of interest, resulting in a 10-fold data reduction. Principal component analysis confirmed that the molecular selectivity of the regions of interest is maintained after data reduction. Partial least-squares and heat map analyses demonstrated a selective signature of the CRCLM, revealing lipids that are significantly up- and down-regulated in the tumor region. This comprehensive approach is thus of interest for defining disease signatures directly from IMS data sets by the use of combinatory data mining, opening novel routes of investigation for addressing the demands of the clinical setting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND Multiple sclerosis (MS) is a neurodegenerative, autoimmune disease of the central nervous system. Genome-wide association studies (GWAS) have identified over hundred polymorphisms with modest individual effects in MS susceptibility and they have confirmed the main individual effect of the Major Histocompatibility Complex. Additional risk loci with immunologically relevant genes were found significantly overrepresented. Nonetheless, it is accepted that most of the genetic architecture underlying susceptibility to the disease remains to be defined. Candidate association studies of the leukocyte immunoglobulin-like receptor LILRA3 gene in MS have been repeatedly reported with inconsistent results. OBJECTIVES In an attempt to shed some light on these controversial findings, a combined analysis was performed including the previously published datasets and three newly genotyped cohorts. Both wild-type and deleted LILRA3 alleles were discriminated in a single-tube PCR amplification and the resulting products were visualized by their different electrophoretic mobilities. RESULTS AND CONCLUSION Overall, this meta-analysis involved 3200 MS patients and 3069 matched healthy controls and it did not evidence significant association of the LILRA3 deletion [carriers of LILRA3 deletion: p = 0.25, OR (95% CI) = 1.07 (0.95-1.19)], even after stratification by gender and the HLA-DRB1*15:01 risk allele.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sparsely spaced highly permeable fractures of the granitic rock aquifer at Stang-er-Brune (Brittany, France) form a well-connected fracture network of high permeability but unknown geometry. Previous work based on optical and acoustic logging together with single-hole and cross-hole flowmeter data acquired in 3 neighbouring boreholes (70-100 m deep) has identified the most important permeable fractures crossing the boreholes and their hydraulic connections. To constrain possible flow paths by estimating the geometries of known and previously unknown fractures, we have acquired, processed and interpreted multifold, single- and cross-hole GPR data using 100 and 250 MHz antennas. The GPR data processing scheme consisting of timezero corrections, scaling, bandpass filtering and F-X deconvolution, eigenvector filtering, muting, pre-stack Kirchhoff depth migration and stacking was used to differentiate fluid-filled fracture reflections from source generated noise. The final stacked and pre-stack depth-migrated GPR sections provide high-resolution images of individual fractures (dipping 30-90°) in the surroundings (2-20 m for the 100 MHz antennas; 2-12 m for the 250 MHz antennas) of each borehole in a 2D plane projection that are of superior quality to those obtained from single-offset sections. Most fractures previously identified from hydraulic testing can be correlated to reflections in the single-hole data. Several previously unknown major near vertical fractures have also been identified away from the boreholes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

When continuous data are coded to categorical variables, two types of coding are possible: crisp coding in the form of indicator, or dummy, variables with values either 0 or 1; or fuzzy coding where each observation is transformed to a set of "degrees of membership" between 0 and 1, using co-called membership functions. It is well known that the correspondence analysis of crisp coded data, namely multiple correspondence analysis, yields principal inertias (eigenvalues) that considerably underestimate the quality of the solution in a low-dimensional space. Since the crisp data only code the categories to which each individual case belongs, an alternative measure of fit is simply to count how well these categories are predicted by the solution. Another approach is to consider multiple correspondence analysis equivalently as the analysis of the Burt matrix (i.e., the matrix of all two-way cross-tabulations of the categorical variables), and then perform a joint correspondence analysis to fit just the off-diagonal tables of the Burt matrix - the measure of fit is then computed as the quality of explaining these tables only. The correspondence analysis of fuzzy coded data, called "fuzzy multiple correspondence analysis", suffers from the same problem, albeit attenuated. Again, one can count how many correct predictions are made of the categories which have highest degree of membership. But here one can also defuzzify the results of the analysis to obtain estimated values of the original data, and then calculate a measure of fit in the familiar percentage form, thanks to the resultant orthogonal decomposition of variance. Furthermore, if one thinks of fuzzy multiple correspondence analysis as explaining the two-way associations between variables, a fuzzy Burt matrix can be computed and the same strategy as in the crisp case can be applied to analyse the off-diagonal part of this matrix. In this paper these alternative measures of fit are defined and applied to a data set of continuous meteorological variables, which are coded crisply and fuzzily into three categories. Measuring the fit is further discussed when the data set consists of a mixture of discrete and continuous variables.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECT: To study a scan protocol for coronary magnetic resonance angiography based on multiple breath-holds featuring 1D motion compensation and to compare the resulting image quality to a navigator-gated free-breathing acquisition. Image reconstruction was performed using L1 regularized iterative SENSE. MATERIALS AND METHODS: The effects of respiratory motion on the Cartesian sampling scheme were minimized by performing data acquisition in multiple breath-holds. During the scan, repetitive readouts through a k-space center were used to detect and correct the respiratory displacement of the heart by exploiting the self-navigation principle in image reconstruction. In vivo experiments were performed in nine healthy volunteers and the resulting image quality was compared to a navigator-gated reference in terms of vessel length and sharpness. RESULTS: Acquisition in breath-hold is an effective method to reduce the scan time by more than 30 % compared to the navigator-gated reference. Although an equivalent mean image quality with respect to the reference was achieved with the proposed method, the 1D motion compensation did not work equally well in all cases. CONCLUSION: In general, the image quality scaled with the robustness of the motion compensation. Nevertheless, the featured setup provides a positive basis for future extension with more advanced motion compensation methods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is common in econometric applications that several hypothesis tests arecarried out at the same time. The problem then becomes how to decide whichhypotheses to reject, accounting for the multitude of tests. In this paper,we suggest a stepwise multiple testing procedure which asymptoticallycontrols the familywise error rate at a desired level. Compared to relatedsingle-step methods, our procedure is more powerful in the sense that itoften will reject more false hypotheses. In addition, we advocate the useof studentization when it is feasible. Unlike some stepwise methods, ourmethod implicitly captures the joint dependence structure of the teststatistics, which results in increased ability to detect alternativehypotheses. We prove our method asymptotically controls the familywise errorrate under minimal assumptions. We present our methodology in the context ofcomparing several strategies to a common benchmark and deciding whichstrategies actually beat the benchmark. However, our ideas can easily beextended and/or modied to other contexts, such as making inference for theindividual regression coecients in a multiple regression framework. Somesimulation studies show the improvements of our methods over previous proposals. We also provide an application to a set of real data.