916 resultados para Multilevel Linear Models


Relevância:

90.00% 90.00%

Publicador:

Resumo:

1. Digital elevation models (DEMs) are often used in landscape ecology to retrieve elevation or first derivative terrain attributes such as slope or aspect in the context of species distribution modelling. However, DEM-derived variables are scale-dependent and, given the increasing availability of very high-resolution (VHR) DEMs, their ecological relevancemust be assessed for different spatial resolutions. 2. In a study area located in the Swiss Western Alps, we computed VHR DEMs-derived variables related to morphometry, hydrology and solar radiation. Based on an original spatial resolution of 0.5 m, we generated DEM-derived variables at 1, 2 and 4 mspatial resolutions, applying a Gaussian Pyramid. Their associations with local climatic factors, measured by sensors (direct and ambient air temperature, air humidity and soil moisture) as well as ecological indicators derived fromspecies composition, were assessed with multivariate generalized linearmodels (GLM) andmixed models (GLMM). 3. Specific VHR DEM-derived variables showed significant associations with climatic factors. In addition to slope, aspect and curvature, the underused wetness and ruggedness indices modelledmeasured ambient humidity and soilmoisture, respectively. Remarkably, spatial resolution of VHR DEM-derived variables had a significant influence on models' strength, with coefficients of determination decreasing with coarser resolutions or showing a local optimumwith a 2 mresolution, depending on the variable considered. 4. These results support the relevance of using multi-scale DEM variables to provide surrogates for important climatic variables such as humidity, moisture and temperature, offering suitable alternatives to direct measurements for evolutionary ecology studies at a local scale.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tutkimuksen aiheena on yleistynyt luottamus. Väitöskirjassa tutkitaan mistä tuntemattomien kansalaisten toisiinsa kohdistama luottamus kumpuaa ja haetaan vastauksia tähän kysymykseen sekä maakohtaisen että vertailevan tutkimuksen avulla. Tutkimus koostuu yhteenvedon lisäksi viidestä tutkimusartikkelista, joissa luottamuksen syntyä tarkastellaan sekä yksilöiden mikrotason vuorovaikutuksen että maiden välisten eroavaisuuksien näkökulmasta. Yleistyneen luottamuksen synnystä on esitetty useita eri teorioita. Tässä tutkimuksessa tarkastellaan näistä kahta keskeisintä. Osa tutkijoista korostaa kansalaisyhteiskunnan ja ruohonjuuritason verkostojen roolia yleistyneen luottamuksen synnyn taustalla. Tämän hypoteesin mukaan kansalaiset, jotka viettävät aikaansa yhdistyksissä tai muissa sosiaalisissa verkostoissa, oppivat muita helpommin luottamaan paitsi täysin tuntemattomiin ihmisiin myös yhteiskunnallisiin instituutioihin (kansalaisyhteiskuntakeskeinen hypoteesi). Toiset taas painottavat yhteiskunnan julkisten instituutioiden merkitystä. Tämä hypoteesi korostaa instituutioiden reiluutta ja oikeudenmukaisuutta (instituutiokeskeinen hypoteesi). Ihmiset pystyvät luottamaan toisiinsa ja ratkaisemaan kollektiivisia ongelmiaan yhdessä silloin kun esimerkiksi poliittiset ja lainsäädännölliset instituutiot pystyvät luomaan tähän tarvittavan toimintaympäristön. Aineistoina käytetään kansallisia (Hyvinvointi- ja palvelut) sekä kansainvälisiä vertailevia kyselytutkimuksia (European Social Survey ja ISSP). Yksilö- ja makrotason analyyseja yhdistämällä selvitetään yleistynyttä luottamusta selittäviä tekijöitä sekä mekanismeja joiden kautta yleistynyt luottamus muodostuu. Väitöskirjan tulokset tukevat suurimmaksi osaksi instituutiokeskeiseen suuntaukseen sisältyviä hypoteeseja yleistyneen luottamuksen kasautumisesta. Kuitenkin myös esimerkiksi yhdistystoiminnalla havaittiin olevan joitakin yhdistysjäsenien ulkopuolelle ulottuvia myönteisiä vaikutuksia kansalaisten luottamukseen, mikä taas tukee kansalaisyhteiskuntakeskeistä hypoteesia. Tutkimuksen keskeinen tulos on, että kaiken kaikkiaan luottamus näyttäisi kukoistavan maissa, joissa kansalaiset kokevat julkiset instituutiot oikeudenmukaisina sekä reiluina, kansalaisyhteiskunnan roolin luottamuksen synnyttämisessä ollessa tälle alisteinen. Syyksi tähän on oletettu, että näissä maissa (erityisesti pohjoismaiset hyvinvointivaltiot) harjoitettu universaali hyvinvointipolitiikka ja palvelut ovat keskeisiä korkeaa yleistynyttä luottamusta selittäviä tekijöitä. Toisaalta maavertailuissa tätä yhteyttä on selitetty myös sillä, että näissä yhteiskunnassa ei ole paikannettavissa selkeää kulttuurisesti erottuvaa alaluokkaa. Tämän tutkimuksen tulokset tukevat enemmän universaalin hyvinvointivaltion oikeudenmukaisuuteen liittyviä ominaisuuksia alaluokkaistumishypoteesin sijaan. Toisaalta mikrotasolla tarkasteltuna yleistyneen luottamuksen ja hyvinvointipalvelujen välinen yhteys liittyy enemmän palveluiden riittävyyteen kuin niiden universaalisuuden asteeseen. Niin ikään maavertailuissa esimerkiksi verotuksen oikeudenmukaisena kokeminen näyttäisi olevan palvelujen saatavuutta tai niihin liittyviä oikeudenmukaisuuden kokemuksia tärkeämpi seikka yleistyneen luottamuksen kannalta.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time series regression models are especially suitable in epidemiology for evaluating short-term effects of time-varying exposures on health. The problem is that potential for confounding in time series regression is very high. Thus, it is important that trend and seasonality are properly accounted for. Our paper reviews the statistical models commonly used in time-series regression methods, specially allowing for serial correlation, make them potentially useful for selected epidemiological purposes. In particular, we discuss the use of time-series regression for counts using a wide range Generalised Linear Models as well as Generalised Additive Models. In addition, recently critical points in using statistical software for GAM were stressed, and reanalyses of time series data on air pollution and health were performed in order to update already published. Applications are offered through an example on the relationship between asthma emergency admissions and photochemical air pollutants

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several methods have been suggested to estimate non-linear models with interaction terms in the presence of measurement error. Structural equation models eliminate measurement error bias, but require large samples. Ordinary least squares regression on summated scales, regression on factor scores and partial least squares are appropriate for small samples but do not correct measurement error bias. Two stage least squares regression does correct measurement error bias but the results strongly depend on the instrumental variable choice. This article discusses the old disattenuated regression method as an alternative for correcting measurement error in small samples. The method is extended to the case of interaction terms and is illustrated on a model that examines the interaction effect of innovation and style of use of budgets on business performance. Alternative reliability estimates that can be used to disattenuate the estimates are discussed. A comparison is made with the alternative methods. Methods that do not correct for measurement error bias perform very similarly and considerably worse than disattenuated regression

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This presentation describes the evolution of SDLCs from the first formally proposed linear models including, the Waterfall (Royce 1970) through to iterative prototyping models (Spiral and Win-Win Spiral) and incremental, iterative models used in Agile Methods. We discuss the problems iinherent in ech prpoosal and how successive models attempt to solve them.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This presentation describes the evolution of Software Development Lifecycles (SDLCs) from the first formally proposed linear models including, the Waterfall (Royce 1970) through to iterative prototyping models (Spiral and Win-Win Spiral) and incremental, iterative models used in Agile Methods. We discuss the problems iinherent in each prpoosal and how successive models attempt to solve them.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Resumen: Este trabajo estudia los resultados en matemáticas y lenguaje de 32000 estudiantes en la prueba saber 11 del 2008, de la ciudad de Bogotá. Este análisis reconoce que los individuos se encuentran contenidos en barrios y colegios, pero no todos los individuos del mismo barrio asisten a la misma escuela y viceversa. Con el fin de modelar esta estructura de datos se utilizan varios modelos econométricos, incluyendo una regresión jerárquica multinivel de efectos cruzados. Nuestro objetivo central es identificar en qué medida y que condiciones del barrio y del colegio se correlacionan con los resultados educacionales de la población objetivo y cuáles características de los barrios y de los colegios están más asociadas al resultado en las pruebas. Usamos datos de la prueba saber 11, del censo de colegios c600, del censo poblacional del 2005 y de la policía metropolitana de Bogotá. Nuestras estimaciones muestran que tanto el barrio como el colegio están correlacionados con los resultados en las pruebas; pero el efecto del colegio parece ser mucho más fuerte que el del barrio. Las características del colegio que están más asociadas con el resultado en las pruebas son la educación de los profesores, la jornada, el valor de la pensión, y el contexto socio económico del colegio. Las características de los barrios más asociadas con el resultado en las pruebas son, la presencia de universitarios en la UPZ, un clúster de altos niveles de educación y nivel de crimen en el barrio que se correlaciona negativamente. Los resultados anteriores fueron hallados teniendo en cuenta controles familiares y personales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the role of natural resource windfalls in explaining the efficiency of public expenditures. Using a rich dataset of expenditures and public good provision for 1,836 municipalities in Peru for period 2001-2010, we estimate a non-monotonic relationship between the efficiency of public good provision and the level of natural resource transfers. Local governments that were extremely favored by the boom of mineral prices were more efficient in using fiscal windfalls whereas those benefited with modest transfers were more inefficient. These results can be explained by the increase in political competition associated with the boom. However, the fact that increases in efficiency were related to reductions in public good provision casts doubts about the beneficial effects of political competition in promoting efficiency.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A variational approach for reliably calculating vibrational linear and nonlinear optical properties of molecules with large electrical and/or mechanical anharmonicity is introduced. This approach utilizes a self-consistent solution of the vibrational Schrödinger equation for the complete field-dependent potential-energy surface and, then, adds higher-level vibrational correlation corrections as desired. An initial application is made to static properties for three molecules of widely varying anharmonicity using the lowest-level vibrational correlation treatment (i.e., vibrational Møller-Plesset perturbation theory). Our results indicate when the conventional Bishop-Kirtman perturbation method can be expected to break down and when high-level vibrational correlation methods are likely to be required. Future improvements and extensions are discussed

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Els estudis de supervivència s'interessen pel temps que passa des de l'inici de l'estudi (diagnòstic de la malaltia, inici del tractament,...) fins que es produeix l'esdeveniment d'interès (mort, curació, millora,...). No obstant això, moltes vegades aquest esdeveniment s'observa més d'una vegada en un mateix individu durant el període de seguiment (dades de supervivència multivariant). En aquest cas, és necessari utilitzar una metodologia diferent a la utilitzada en l'anàlisi de supervivència estàndard. El principal problema que l'estudi d'aquest tipus de dades comporta és que les observacions poden no ser independents. Fins ara, aquest problema s'ha solucionat de dues maneres diferents en funció de la variable dependent. Si aquesta variable segueix una distribució de la família exponencial s'utilitzen els models lineals generalitzats mixtes (GLMM); i si aquesta variable és el temps, variable amb una distribució de probabilitat no pertanyent a aquesta família, s'utilitza l'anàlisi de supervivència multivariant. El que es pretén en aquesta tesis és unificar aquests dos enfocs, és a dir, utilitzar una variable dependent que sigui el temps amb agrupacions d'individus o d'observacions, a partir d'un GLMM, amb la finalitat d'introduir nous mètodes pel tractament d'aquest tipus de dades.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current energy requirements system used in the United Kingdom for lactating dairy cows utilizes key parameters such as metabolizable energy intake (MEI) at maintenance (MEm), the efficiency of utilization of MEI for 1) maintenance, 2) milk production (k(l)), 3) growth (k(g)), and the efficiency of utilization of body stores for milk production (k(t)). Traditionally, these have been determined using linear regression methods to analyze energy balance data from calorimetry experiments. Many studies have highlighted a number of concerns over current energy feeding systems particularly in relation to these key parameters, and the linear models used for analyzing. Therefore, a database containing 652 dairy cow observations was assembled from calorimetry studies in the United Kingdom. Five functions for analyzing energy balance data were considered: straight line, two diminishing returns functions, (the Mitscherlich and the rectangular hyperbola), and two sigmoidal functions (the logistic and the Gompertz). Meta-analysis of the data was conducted to estimate k(g) and k(t). Values of 0.83 to 0.86 and 0.66 to 0.69 were obtained for k(g) and k(t) using all the functions (with standard errors of 0.028 and 0.027), respectively, which were considerably different from previous reports of 0.60 to 0.75 for k(g) and 0.82 to 0.84 for k(t). Using the estimated values of k(g) and k(t), the data were corrected to allow for body tissue changes. Based on the definition of k(l) as the derivative of the ratio of milk energy derived from MEI to MEI directed towards milk production, MEm and k(l) were determined. Meta-analysis of the pooled data showed that the average k(l) ranged from 0.50 to 0.58 and MEm ranged between 0.34 and 0.64 MJ/kg of BW0.75 per day. Although the constrained Mitscherlich fitted the data as good as the straight line, more observations at high energy intakes (above 2.4 MJ/kg of BW0.75 per day) are required to determine conclusively whether milk energy is related to MEI linearly or not.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

With the current concern over climate change, descriptions of how rainfall patterns are changing over time can be useful. Observations of daily rainfall data over the last few decades provide information on these trends. Generalized linear models are typically used to model patterns in the occurrence and intensity of rainfall. These models describe rainfall patterns for an average year but are more limited when describing long-term trends, particularly when these are potentially non-linear. Generalized additive models (GAMS) provide a framework for modelling non-linear relationships by fitting smooth functions to the data. This paper describes how GAMS can extend the flexibility of models to describe seasonal patterns and long-term trends in the occurrence and intensity of daily rainfall using data from Mauritius from 1962 to 2001. Smoothed estimates from the models provide useful graphical descriptions of changing rainfall patterns over the last 40 years at this location. GAMS are particularly helpful when exploring non-linear relationships in the data. Care is needed to ensure the choice of smooth functions is appropriate for the data and modelling objectives. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work analyzes the use of linear discriminant models, multi-layer perceptron neural networks and wavelet networks for corporate financial distress prediction. Although simple and easy to interpret, linear models require statistical assumptions that may be unrealistic. Neural networks are able to discriminate patterns that are not linearly separable, but the large number of parameters involved in a neural model often causes generalization problems. Wavelet networks are classification models that implement nonlinear discriminant surfaces as the superposition of dilated and translated versions of a single "mother wavelet" function. In this paper, an algorithm is proposed to select dilation and translation parameters that yield a wavelet network classifier with good parsimony characteristics. The models are compared in a case study involving failed and continuing British firms in the period 1997-2000. Problems associated with over-parameterized neural networks are illustrated and the Optimal Brain Damage pruning technique is employed to obtain a parsimonious neural model. The results, supported by a re-sampling study, show that both neural and wavelet networks may be a valid alternative to classical linear discriminant models.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.