933 resultados para Multidimensional Expressions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

St?ber, Karen. 'The role of late medieval English monasteries as expressions of patronal authority: some case studies', in: 'The Use and Abuse of Sacred Places in Late Medieval Towns, Medievalia Lovaniensia, Series I, Studia XXXVIII', (Leuven: Leuven University Press), pp.189-207, 2006 RAE2008

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exact, closed-form analytical expressions are presented for evaluating the potential energy of electrical double layer (EDL) interactions between a sphere and an infinite flat plate for three different types of interactions: constant potential, constant charge, and an intermediate case as given by the linear superposition approximation (LSA). By taking advantage of the simpler sphere-plate geometry, simplifying assumptions used in the original Derjaguin approximation (DA) for sphere-sphere interaction are avoided, yielding expressions that are more accurate and applicable over the full range of κa. These analytical expressions are significant improvements over the existing equations in the literature that are valid only for large κa because the new equations facilitate the modeling of EDL interactions between nanoscale particles and surfaces over a wide range of ionic strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electromagnetic metamaterials are artificially structured media typically composed of arrays of resonant electromagnetic circuits, the dimension and spacing of which are considerably smaller than the free-space wavelengths of operation. The constitutive parameters for metamaterials, which can be obtained using full-wave simulations in conjunction with numerical retrieval algorithms, exhibit artifacts related to the finite size of the metamaterial cell relative to the wavelength. Liu showed that the complicated, frequency-dependent forms of the constitutive parameters can be described by a set of relatively simple analytical expressions. These expressions provide useful insight and can serve as the basis for more intelligent interpolation or optimization schemes. Here, we show that the same analytical expressions can be obtained using a transfer-matrix formalism applied to a one-dimensional periodic array of thin, resonant, dielectric, or magnetic sheets. The transfer-matrix formalism breaks down, however, when both electric and magnetic responses are present in the same unit cell, as it neglects the magnetoelectric coupling between unit cells. We show that an alternative analytical approach based on the same physical model must be applied for such structures. Furthermore, in addition to the intercell coupling, electric and magnetic resonators within a unit cell may also exhibit magnetoelectric coupling. For such cells, we find an analytical expression for the effective index, which displays markedly characteristic dispersion features that depend on the strength of the coupling coefficient. We illustrate the applicability of the derived expressions by comparing to full-wave simulations on magnetoelectric unit cells. We conclude that the design of metamaterials with tailored simultaneous electric and magnetic response-such as negative index materials-will generally be complicated by potentially unwanted magnetoelectric coupling. © 2010 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper, chosen as a best paper from the 2004 SAMOS Workshop on Computer Systems: describes a novel, efficient methodology for automatically creating embedded DSP computer systems. The novelty arises since now embedded electronic signal processing systems, such as radar or sonar, can be designed by anyone from the algorithm level, i.e. no low level system design experience is required, whilst still achieving low controllable implementation overheads and high real time performance. In the chosen design example, a bank of Normalised Lattice Filter (NLF) components is created which a four-fold reduction in the required processing resource with no performance decrease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We introduce multidimensional Schur multipliers and characterise them, generalising well-known results by Grothendieck and Peller. We define a multidimensional version of the two-dimensional operator multipliers studied recently by Kissin and Shulman. The multidimensional operator multipliers are defined as elements of the minimal tensor product of several C *-algebras satisfying certain boundedness conditions. In the case of commutative C*-algebras, the multidimensional operator multipliersreduce to continuousmul-tidimensional Schur multipliers. We show that the multiplierswith respect to some given representations of the corresponding C*-algebrasdo not change if the representations are replaced by approximately equivalent ones. We establish a non-commutative and multidimensional version of the characterisations by Grothendieck and Peller which shows that universal operator multipliers can be obtained ascertain weak limits of elements of the algebraic tensor product of the corresponding C *-algebras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following brain injury there is often a prolonged period of deteriorating psychological condition, despite neurological stability or improvement. This is presumably consequent to the remission of anosognosia and the realisation of permanently worsened status. This change is hypothesised to be directed partially by the socially mediated processes which play a role in generating self-awareness and which here direct the reconstruction of the self as a permanently injured person. However, before we can understand this process of redevelopment, we need an unbiassed technique to monitor self-awareness. Semi-structured interviews were conducted with 30 individuals with long-standing brain injuries to capture their spontaneous complaints and their level of insight into the implications of their difficulties. The focus was on what the participants said in their own words, and the extent to which self-knowledge of difficulties was spontaneously salient to the participants. Their responses were subjected to content analysis. Most participants were able to say that they had brain injuries and physical difficulties, many mentioned memory and attentional problems and a few made references to a variety of emotional disturbances. Content analysis of data from unbiassed interviews can reveal the extent to which people with brain injuries know about their difficulties. Social constructionist accounts of self-awareness and recovery are supported.