918 resultados para Multicast Packing Problem. Multiobjective Optimization. Network Optimization. Multicast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate several two-dimensional guillotine cutting stock problems and their variants in which orthogonal rotations are allowed. We first present two dynamic programming based algorithms for the Rectangular Knapsack (RK) problem and its variants in which the patterns must be staged. The first algorithm solves the recurrence formula proposed by Beasley; the second algorithm - for staged patterns - also uses a recurrence formula. We show that if the items are not so small compared to the dimensions of the bin, then these algorithms require polynomial time. Using these algorithms we solved all instances of the RK problem found at the OR-LIBRARY, including one for which no optimal solution was known. We also consider the Two-dimensional Cutting Stock problem. We present a column generation based algorithm for this problem that uses the first algorithm above mentioned to generate the columns. We propose two strategies to tackle the residual instances. We also investigate a variant of this problem where the bins have different sizes. At last, we study the Two-dimensional Strip Packing problem. We also present a column generation based algorithm for this problem that uses the second algorithm above mentioned where staged patterns are imposed. In this case we solve instances for two-, three- and four-staged patterns. We report on some computational experiments with the various algorithms we propose in this paper. The results indicate that these algorithms seem to be suitable for solving real-world instances. We give a detailed description (a pseudo-code) of all the algorithms presented here, so that the reader may easily implement these algorithms. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal location on the transport infrastructure is the preferable requirement for many decision making processes. Most studies have focused on evaluating performances of optimally locate p facilities by minimizing their distances to a geographically distributed demand (n) when p and n vary. The optimal locations are also sensitive to geographical context such as road network, especially when they are asymmetrically distributed in the plane. The influence of alternating road network density is however not a very well-studied problem especially when it is applied in a real world context. This paper aims to investigate how the density level of the road network affects finding optimal location by solving the specific case of p-median location problem. A denser network is found needed when a higher number of facilities are to locate. The best solution will not always be obtained in the most detailed network but in a middle density level. The solutions do not further improve or improve insignificantly as the density exceeds 12,000 nodes, some solutions even deteriorate. The hierarchy of the different densities of network can be used according to location and transportation purposes and increase the efficiency of heuristic methods. The method in this study can be applied to other location-allocation problem in transportation analysis where the road network density can be differentiated. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The SONET/SDH Ring Assignment Problem (PALAS) treats to group localities in form of some rings, being respected the traffic's limitations of the equipment. Each ring uses a DXC (Digital Cross Connect) to make the communication with the others, being the DXC the equipment most expensive of the net, minimizing the number total of rings, will minimize the total net cost, problem's objective . This topology in rings provides a bigger capacity of regeneration. The PALAS is a problem in Combinatorial Optimization of NP-hard Class. It can be solved through Heuristics and Metaheuristics. In this text, we use Taboo Search while we keep a set of elite solutions to be used in the formation of a part of the collection of vocabulary's parts that in turn will be used in the Vocabulary Building. The Vocabulary Building will be started case Taboo Search does not reach the best solution for the instance. Three approaches had been implemented: one that only uses vocabulary's parts deriving of Taboo Search, one that it only uses vocabulary's parts randomly generated and a last one that it uses half come of the elite and half randomly generated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antenna arrays are able to provide high and controlled directivity, which are suitable for radiobase stations, radar systems, and point-to-point or satellite links. The optimization of an array design is usually a hard task because of the non-linear characteristic of multiobjective, requiring the application of numerical techniques, such as genetic algorithms. Therefore, in order to optimize the electronic control of the antenna array radiation pattem through genetic algorithms in real codification, it was developed a numerical tool which is able to positioning the array major lobe, reducing the side lobe levels, canceling interference signals in specific directions of arrival, and improving the antenna radiation performance. This was accomplished by using antenna theory concepts and optimization methods, mainly genetic algorithms ones, allowing to develop a numerical tool with creative genes codification and crossover rules, which is one of the most important contribution of this work. The efficiency of the developed genetic algorithm tool is tested and validated in several antenna and propagation applications. 11 was observed that the numerical results attend the specific requirements, showing the developed tool ability and capacity to handle the considered problems, as well as a great perspective for application in future works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the renewed interest in distributed generation (DG), the number of DG units incorporated in distribution systems has been rapidly increasing in the past few years. This situation requires new analysis tools for understanding system performance, and taking advantage of the potential benefits of DG. This paper presents an evolutionary multi-objective programming approach to determine the optimal operation of DG in distribution systems. The objectives are the minimization of the system power losses and operation cost of the DG units. The proposed approach also considers the inherent stochasticity of DG technologies powered by renewable resources. Some tests were carried out on the IEEE 34 bus distribution test system showing the robustness and applicability of the proposed methodology. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is the application of the Interior Point and Branch and Bound methods in multiobjective optimization models related to sugarcane harvest residual biomass. These methods showed their viability to help on choosing the sugarcane planting varieties, searching to optimize cost and energy balance of harvest residual biomass, which have conflitant objectives. These methods provide satisfactory results, with fair computing performance and reliable and consistent solutions to the analyzed models. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a methodology to consider the effects of the integration of DG on planning. Since DG has potential to defer investments in networks, the impact of DG on grid capacity is evaluated. A multi-objective optimization tool based on the meta-heuristic MEPSO is used, supporting an alternative approach to exploiting the Pareto front features. Tests were performed in distinct conditions with two well-known distribution networks: IEEE-34 and IEEE-123. The results combined minimization and maximization in order to produce different Pareto fronts and determine the extent of the impact caused by DG. The analysis provides useful information, such as the identification of futures that should be considered in planning. A future means a set of realizations of all uncertainties. MEPSO also presented a satisfactory performance in obtaining the Pareto fronts. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The urbanization of modern societies has imposed to the planners and decision-makers a more precise attention to facts not considered before. Several aspects, such as the energy availability and the deleterious effect of pollution on the populations, must be considered in the policy decisions of cities urbanization. The current paradigm presents centralized power stations supplying a city, and a combination of technologies may compose the energy mix of a country, such as thermal power plants, hydroelectric plants, wind systems and solar-based systems, with their corresponding emission pattern. A goal programming multi-objective optimization model is presented for the electric expansion analysis of a tropical city, and also a case study for the city of Guaratinguetá, Brazil, considering a particular wind and solar radiation patterns established according to actual data and modeled via the time series analysis method. Scenarios are proposed and the results of single environmental objective, single economic objective and goal programming multi-objective modeling are discussed. The consequences of each dispatch decision, which considers pollutant emission exportation to the neighborhood or the need of supplementing electricity by purchasing it from the public electric power grid, are discussed. The results revealed energetic dispatch for the alternatives studied and the optimum environmental and economic solution was obtained. © 2012 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper tackles a Nurse Scheduling Problem which consists of generating work schedules for a set of nurses while considering their shift preferences and other requirements. The objective is to maximize the satisfaction of nurses' preferences and minimize the violation of soft constraints. This paper presents a new deterministic heuristic algorithm, called MAPA (multi-assignment problem-based algorithm), which is based on successive resolutions of the assignment problem. The algorithm has two phases: a constructive phase and an improvement phase. The constructive phase builds a full schedule by solving successive assignment problems, one for each day in the planning period. The improvement phase uses a couple of procedures that re-solve assignment problems to produce a better schedule. Given the deterministic nature of this algorithm, the same schedule is obtained each time that the algorithm is applied to the same problem instance. The performance of MAPA is benchmarked against published results for almost 250,000 instances from the NSPLib dataset. In most cases, particularly on large instances of the problem, the results produced by MAPA are better when compared to best-known solutions from the literature. The experiments reported here also show that the MAPA algorithm finds more feasible solutions compared with other algorithms in the literature, which suggest that this proposed approach is effective and robust. © 2013 Springer Science+Business Media New York.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the question of maximizing classifier accuracy for classifying task-related mental activity from Magnetoencelophalography (MEG) data. We propose the use of different sources of information and introduce an automatic channel selection procedure. To determine an informative set of channels, our approach combines a variety of machine learning algorithms: feature subset selection methods, classifiers based on regularized logistic regression, information fusion, and multiobjective optimization based on probabilistic modeling of the search space. The experimental results show that our proposal is able to improve classification accuracy compared to approaches whose classifiers use only one type of MEG information or for which the set of channels is fixed a priori.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variable reluctance motors have been increasingly used as an alternative for variable speed and high speed drives in many industrial applications, due to many advantages like the simplicity of construction, robustness, and low cost. The most common applications in recent years are related to aeronautics, electric and hybrid vehicles and wind power generation. This paper explores the theory, operation, design procedures and analysis of a variable reluctance machine. An iterative design methodology is introduced and used to design a 1.25 kW prototype. For the analysis of the machine two methods are used, an analytical method and the finite element simulation. The results obtained by both methods are compared. The results of finite element simulation are used to determine the inductance profiles and torque of the prototype. The magnetic saturation is examined visually and numerically in four critical points of the machine. The data collected in the simulation allow the verification of design and operating limits for the prototype. Moreover, the behavior of the output quantities is analyzed (inductance, torque and magnetic saturation) by variation of physical dimensions of the motor. Finally, a multiobjective optimization using Differential Evolution algorithms and Genetic Algorithms for switched reluctance machine design is proposed. The optimized variables are rotor and stator polar arcs, and the goals are to maximize the average torque, the average torque per copper losses and the average torque per core volume. Finally, the initial design and optimized design are compared.