867 resultados para Multi-scale modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a globalized economy, the use of natural resources is determined by the demand of modern production and consumption systems, and by infrastructure development. Sustainable natural resource use will require good governance and management based on sound scientific information, data and indicators. There is a rich literature on natural resource management, yet the national and global scale and macro-economic policy making has been underrepresented. We provide an overview of the scholarly literature on multi-scale governance of natural resources, focusing on the information required by relevant actors from local to global scale. Global natural resource use is largely determined by national, regional, and local policies. We observe that in recent decades, the development of public policies of natural resource use has been fostered by an “inspiration cycle” between the research, policy and statistics community, fostering social learning. Effective natural resource policies require adequate monitoring tools, in particular indicators for the use of materials, energy, land, and water as well as waste and GHG emissions of national economies. We summarize the state-of-the-art of the application of accounting methods and data sources for national material flow accounts and indicators, including territorial and product-life-cycle based approaches. We show how accounts on natural resource use can inform the Sustainable Development Goals (SDGs) and argue that information on natural resource use, and in particular footprint indicators, will be indispensable for a consistent implementation of the SDGs. We recognize that improving the knowledge base for global natural resource use will require further institutional development including at national and international levels, for which we outline options.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessing the ways in which rural agrarian areas provide Cultural Ecosystem Services (CES) is proving difficult to achieve. This research has developed an innovative methodological approach named as Multi Scale Indicator Framework (MSIF) for capturing the CES embedded into the rural agrarian areas. This framework reconciles a literature review with a transdisciplinary participatory workshop. Both of these sources reveal that societal preferences diverge upon judgemental criteria which in turn relate to different visual concepts that can be drawn from analyzing attributes, elements, features and characteristics of rural areas. We contend that it is now possible to list a group of possible multi scale indicators for stewardship, diversity and aesthetics. These results might also be of use for improving any existing European indicators frameworks by also including CES. This research carries major implications for policy at different levels of governance, as it makes possible to target and monitor policy instruments to the physical rural settings so that cultural dimensions are adequately considered. There is still work to be developed on regional specific values and thresholds for each criteria and its indicator set. In practical terms, by developing the conceptual design within a common framework as described in this paper, a considerable step forward toward the inclusion of the cultural dimension in European wide assessments can be made

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil's Low Carbon Agriculture is one the initiatives that puts the climate in the agricultural agenda towards a more sustainable and adapted agriculture under global changes. Among the several practices listed and supported by the ABC Plan, zero tillage and integrated crop-livestock-forestry systems including the recovery of degraded pasture are the most relevant ones. The objective of this paper is to present the Geo-ABC Project, a procedure to monitor the implementation of the Brazil?s Low Carbon Agriculture (ABC Plan) and aiming at the development of remote sensing methods to monitor agricultural systems listed in the ABC Plan and adopted at local scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Landslides are common features of the landscape of the north-central Apennine mountain range and cause frequent damage to human facilities and infrastructure. Most of these landslides move periodically with moderate velocities and, only after particular rainfall events, some accelerate abruptly. Synthetic aperture radar interferometry (InSAR) provides a particularly convenient method for studying deforming slopes. We use standard two-pass interferometry, taking advantage of the short revisit time of the Sentinel-1 satellites. In this paper we present the results of the InSAR analysis developed on several study areas in central and Northern Italian Apennines. The aims of the work described within the articles contained in this paper, concern: i) the potential of the standard two-pass interferometric technique for the recognition of active landslides; ii) the exploration of the potential related to the displacement time series resulting from a two-pass multiple time-scale InSAR analysis; iii) the evaluation of the possibility of making comparisons with climate forcing for cognitive and risk assessment purposes. Our analysis successfully identified more than 400 InSAR deformation signals (IDS) in the different study areas corresponding to active slope movements. The comparison between IDSs and thematic maps allowed us to identify the main characteristics of the slopes most prone to landslides. The analysis of displacement time series derived from monthly interferometric stacks or single 6-day interferograms allowed the establishment of landslide activity thresholds. This information, combined with the displacement time series, allowed the relationship between ground deformation and climate forcing to be successfully investigated. The InSAR data also gave access to the possibility of validating geographical warning systems and comparing the activity state of landslides with triggering probability thresholds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study forms part of wider research conducted under a EU 7 th Framework Programme (COmputationally Driven design of Innovative CEment-based materials or CODICE). The ultimate aim is the multi-scale modelling of the variations in mechanical performance in degraded and non-degraded cementitious matrices. The model is being experimentally validated by hydrating the main tri-calcium silicate (T1-C3S) and bi-calcium silicate (β-C2S), phases present in Portland cement and their blends. The present paper discusses micro- and nanoscale studies of the cementitious skeletons forming during the hydration of C3S, C2S and 70 % / 30 % blends of both C3S/C2S and C2S/C3S with a water/cement ratio of 0.4. The hydrated pastes were characterized at different curing ages with 29 Si NMR, SEM/TEM/EDS, BET, and nanoindentation. The findings served as a basis for the micro- and nanoscale characterization of the hydration products formed, especially C-S-H gels. Differences were identified in composition, structure and mechanical behaviour (nanoindentation), depending on whether the gels formed in C3S or C2S pastes. The C3S gels had more compact morphologies, smaller BET-N2 specific surface area and lesser porosity than the gels from C2S-rich pastes. The results of nanoindentation tests appear to indicate that the various C-S-H phases formed in hydrated C3S and C2S have the same mechanical properties as those formed in Portland cement paste. Compared to the C3S sample, the hydrated C2S specimen was dominated by the loose-packed (LP) and the low-density (LD) C-S-H phases, and had a much lower content of the high density (HD) C-S-H phase

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work is to present a general overview of state-of-the-art related to design for uncertainty with a focus on aerospace structures. In particular, a simulation on a FCCZ lattice cell and on the profile shape of a nozzle will be performed. Optimization under uncertainty is characterized by the need to make decisions without complete knowledge of the problem data. When dealing with a complex problem, non-linearity, or optimization, two main issues are raised: the uncertainty of the feasibility of the solution and the uncertainty of the objective value of the function. In the first part, the Design Of Experiments (DOE) methodologies, Uncertainty Quantification (UQ), and then Uncertainty optimization will be deepened. The second part will show an application of the previous theories on through a commercial software. Nowadays multiobjective optimization on high non-linear problem can be a powerful tool to approach new concept solutions or to develop cutting-edge design. In this thesis an effective improvement have been reached on a rocket nozzle. Future work could include the introduction of multi scale modelling, multiphysics approach and every strategy useful to simulate as much possible real operative condition of the studied design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent decades, an increased interest has been evidenced in the research on multi-scale hierarchical modelling in the field of mechanics, and also in the field of wood products and timber engineering. One of the main motivations for hierar-chical modelling is to understand how properties, composition and structure at lower scale levels may influence and be used to predict the material properties on a macroscopic and structural engineering scale. This chapter presents the applicability of statistic and probabilistic methods, such as the Maximum Likelihood method and Bayesian methods, in the representation of timber’s mechanical properties and its inference accounting to prior information obtained in different importance scales. These methods allow to analyse distinct timber’s reference properties, such as density, bending stiffness and strength, and hierarchically consider information obtained through different non, semi or destructive tests. The basis and fundaments of the methods are described and also recommendations and limitations are discussed. The methods may be used in several contexts, however require an expert’s knowledge to assess the correct statistic fitting and define the correlation arrangement between properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rare species have restricted geographic ranges, habitat specialization, and/or small population sizes. Datasets on rare species distribution usually have few observations, limited spatial accuracy and lack of valid absences; conversely they provide comprehensive views of species distributions allowing to realistically capture most of their realized environmental niche. Rare species are the most in need of predictive distribution modelling but also the most difficult to model. We refer to this contrast as the "rare species modelling paradox" and propose as a solution developing modelling approaches that deal with a sufficiently large set of predictors, ensuring that statistical models aren't overfitted. Our novel approach fulfils this condition by fitting a large number of bivariate models and averaging them with a weighted ensemble approach. We further propose that this ensemble forecasting is conducted within a hierarchic multi-scale framework. We present two ensemble models for a test species, one at regional and one at local scale, each based on the combination of 630 models. In both cases, we obtained excellent spatial projections, unusual when modelling rare species. Model results highlight, from a statistically sound approach, the effects of multiple drivers in a same modelling framework and at two distinct scales. From this added information, regional models can support accurate forecasts of range dynamics under climate change scenarios, whereas local models allow the assessment of isolated or synergistic impacts of changes in multiple predictors. This novel framework provides a baseline for adaptive conservation, management and monitoring of rare species at distinct spatial and temporal scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two ongoing projects at ESSC that involve the development of new techniques for extracting information from airborne LiDAR data and combining this information with environmental models will be discussed. The first project in conjunction with Bristol University is aiming to improve 2-D river flood flow models by using remote sensing to provide distributed data for model calibration and validation. Airborne LiDAR can provide such models with a dense and accurate floodplain topography together with vegetation heights for parameterisation of model friction. The vegetation height data can be used to specify a friction factor at each node of a model’s finite element mesh. A LiDAR range image segmenter has been developed which converts a LiDAR image into separate raster maps of surface topography and vegetation height for use in the model. Satellite and airborne SAR data have been used to measure flood extent remotely in order to validate the modelled flood extent. Methods have also been developed for improving the models by decomposing the model’s finite element mesh to reflect floodplain features such as hedges and trees having different frictional properties to their surroundings. Originally developed for rural floodplains, the segmenter is currently being extended to provide DEMs and friction parameter maps for urban floods, by fusing the LiDAR data with digital map data. The second project is concerned with the extraction of tidal channel networks from LiDAR. These networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt-marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. A semi-automatic technique has been developed to extract networks from LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low level algorithms first extract channel fragments based mainly on image properties then a high level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent coordinated observations of interplanetary scintillation (IPS) from the EISCAT, MERLIN, and STELab, and stereoscopic white-light imaging from the two heliospheric imagers (HIs) onboard the twin STEREO spacecraft are significant to continuously track the propagation and evolution of solar eruptions throughout interplanetary space. In order to obtain a better understanding of the observational signatures in these two remote-sensing techniques, the magnetohydrodynamics of the macro-scale interplanetary disturbance and the radio-wave scattering of the micro-scale electron-density fluctuation are coupled and investigated using a newly constructed multi-scale numerical model. This model is then applied to a case of an interplanetary shock propagation within the ecliptic plane. The shock could be nearly invisible to an HI, once entering the Thomson-scattering sphere of the HI. The asymmetry in the optical images between the western and eastern HIs suggests the shock propagation off the Sun–Earth line. Meanwhile, an IPS signal, strongly dependent on the local electron density, is insensitive to the density cavity far downstream of the shock front. When this cavity (or the shock nose) is cut through by an IPS ray-path, a single speed component at the flank (or the nose) of the shock can be recorded; when an IPS ray-path penetrates the sheath between the shock nose and this cavity, two speed components at the sheath and flank can be detected. Moreover, once a shock front touches an IPS ray-path, the derived position and speed at the irregularity source of this IPS signal, together with an assumption of a radial and constant propagation of the shock, can be used to estimate the later appearance of the shock front in the elongation of the HI field of view. The results of synthetic measurements from forward modelling are helpful in inferring the in-situ properties of coronal mass ejection from real observational data via an inverse approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Obstacles considerably influence boundary layer processes. Their influences have been included in mesoscale models (MeM) for a long time. Methods used to parameterise obstacle effects in a MeM are summarised in this paper using results of the mesoscale model METRAS as examples. Besides the parameterisation of obstacle influences it is also possible to use a joint modelling approach to describe obstacle induced and mesoscale changes. Three different methods may be used for joint modelling approaches: The first method is a time-slice approach, where steady basic state profiles are used in an obstacle resolving microscale model (MiM, example model MITRAS) and diurnal cycles are derived by joining steady-state MITRAS results. The second joint modelling approach is one-way nesting, where the MeM results are used to initialise the MiM and to drive the boundary values of the MiM dependent on time. The third joint modelling approach is to apply multi-scale models or two-way nesting approaches, which include feedbacks from the MiM to the MeM. The advantages and disadvantages of the different approaches and remaining problems with joint Reynolds-averaged Navier–Stokes modelling approaches are summarised in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial data set delineates areas with similar environmental properties regarding soil, terrain morphology, climate and affiliation to the same administrative unit (NUTS3 or comparable units in size) at a minimum pixel size of 1km2. The scope of developing this data set is to provide a link between spatial environmental information (e.g. soil properties) and statistical data (e.g. crop distribution) available at administrative level. Impact assessment of agricultural management on emissions of pollutants or radiative active gases, or analysis regarding the influence of agricultural management on the supply of ecosystem services, require the proper spatial coincidence of the driving factors. The HSU data set provides e.g. the link between the agro-economic model CAPRI and biophysical assessment of environmental impacts (updating previously spatial units, Leip et al. 2008), for the analysis of policy scenarios. Recently, a statistical model to disaggregate crop information available from regional statistics to the HSU has been developed (Lamboni et al. 2016). The HSU data set consists of the spatial layers provided in vector and raster format as well as attribute tables with information on the properties of the HSU. All input data for the delineation the HSU is publicly available. For some parameters the attribute tables provide the link between the HSU data set and e.g. the soil map(s) rather than the data itself. The HSU data set is closely linked the USCIE data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the use of neural field models for modelling the brain at the large scales necessary for interpreting EEG, fMRI, MEG and optical imaging data. Albeit a framework that is limited to coarse-grained or mean-field activity, neural field models provide a framework for unifying data from different imaging modalities. Starting with a description of neural mass models we build to spatially extended cortical models of layered two-dimensional sheets with long range axonal connections mediating synaptic interactions. Reformulations of the fundamental non-local mathematical model in terms of more familiar local differential (brain wave) equations are described. Techniques for the analysis of such models, including how to determine the onset of spatio-temporal pattern forming instabilities, are reviewed. Extensions of the basic formalism to treat refractoriness, adaptive feedback and inhomogeneous connectivity are described along with open challenges for the development of multi-scale models that can integrate macroscopic models at large spatial scales with models at the microscopic scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A subfilter-scale (SFS) stress model is developed for large-eddy simulations (LES) and is tested on various benchmark problems in both wall-resolved and wall-modelled LES. The basic ingredients of the proposed model are the model length-scale, and the model parameter. The model length-scale is defined as a fraction of the integral scale of the flow, decoupled from the grid. The portion of the resolved scales (LES resolution) appears as a user-defined model parameter, an advantage that the user decides the LES resolution. The model parameter is determined based on a measure of LES resolution, the SFS activity. The user decides a value for the SFS activity (based on the affordable computational budget and expected accuracy), and the model parameter is calculated dynamically. Depending on how the SFS activity is enforced, two SFS models are proposed. In one approach the user assigns the global (volume averaged) contribution of SFS to the transport (global model), while in the second model (local model), SFS activity is decided locally (locally averaged). The models are tested on isotropic turbulence, channel flow, backward-facing step and separating boundary layer. In wall-resolved LES, both global and local models perform quite accurately. Due to their near-wall behaviour, they result in accurate prediction of the flow on coarse grids. The backward-facing step also highlights the advantage of decoupling the model length-scale from the mesh. Despite the sharply refined grid near the step, the proposed SFS models yield a smooth, while physically consistent filter-width distribution, which minimizes errors when grid discontinuity is present. Finally the model application is extended to wall-modelled LES and is tested on channel flow and separating boundary layer. Given the coarse resolution used in wall-modelled LES, near the wall most of the eddies become SFS and SFS activity is required to be locally increased. The results are in very good agreement with the data for the channel. Errors in the prediction of separation and reattachment are observed in the separated flow, that are somewhat improved with some modifications to the wall-layer model.