943 resultados para Multi-drug resistant bacteria


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial resistance to almost all available antibiotics is an important public health issue. A major goal in antimicrobial drug discovery is the generation of new chemicals capable of killing pathogens with high selectivity, particularly multi-drug-resistant ones. Here we report the design, preparation and activity of new compounds based on a tunable, chemically accessible and upscalable lipopeptide scaffold amenable to suitable hit-to-lead development. Such compounds could become therapeutic candidates and future antibiotics available on the market. The compounds are cyclic, contain two D-amino acids for in vivo stability and their structures are reminiscent of other cyclic disulfide-containing peptides available on the market. The optimized compounds prove to be highly active against clinically relevant Gram-negative and Gram-positive bacteria. In vitro and in vivo tests show the low toxicity of the compounds. Their antimicrobial activity against resistant and multidrug-resistant bacteria is at the membrane level, although other targets may also be involved depending on the bacterial strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overexpression of cytokine-induced apoptosis inhibitor 1 (CIAPIN1) contributes to multidrug resistance (MDR) in breast cancer. This study aimed to evaluate the potential of CIAPIN1 gene silencing by RNA interference (RNAi) as a treatment for drug-resistant breast cancer and to investigate the effect of CIAPIN1 on the drug resistance of breast cancer in vivo. We used lentivirus-vector-based RNAi to knock down CIAPIN1 in nude mice bearing MDR breast cancer tumors and found that lentivirus-vector-mediated silencing of CIAPIN1 could efficiently and significantly inhibit tumor growth when combined with chemotherapy in vivo. Furthermore, Western blot analysis showed that both CIAPIN1 and P-glycoprotein expression were efficiently downregulated, and P53 was upregulated, after RNAi. Therefore, we concluded that lentivirus-vector-mediated RNAi targeting of CIAPIN1 is a potential approach to reverse MDR of breast cancer. In addition, CIAPIN1 may participate in MDR of breast cancer by regulating P-glycoprotein and P53 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Depuis quelques années, il y a émergence de souches de Salmonella enterica sérovar Typhimurium multirésistantes causant une septicémie et la mort chez le porc. Ceci constitue un problème majeur pour l’industrie porcine et possiblement pour la santé publique. L’objectif de ce projet était de comparer et de caractériser une souche capable de causer une septicémie chez le porc et une souche commensale, en observant l’interaction avec des cellules épithéliales, des macrophages humains et d’identifier des gènes exprimés par les souches septicémiques et les souches commensales. Tout d’abord, l’infection de cellules épithéliales permet d’observer l’adhérence et l’invasion des bactéries, pour ainsi mettre en évidence la capacité des souches à coloniser le tractus gastro-intestinal. La souche commensale possède un pouvoir d’adhésion supérieur à la souche septicémique. Par la suite, l’infection de macrophages permet de caractériser le niveau de phagocytose et de survie. L’importance de la survie dans les macrophages pourrait permettre de faire un lien avec la septicémie. Toutefois, aucune différence n’est observable dans les conditions qui ont été testé. Ensuite, la technique SCOTS (Selective Capture of Transcribed Sequences) est utilisée pour capturer des gènes uniques à la souche septicémique et un autre SCOTS est fait pour capturer les gènes spécifiques à la souche commensale. Finalement, les gènes sont clonés, leur spécificité face aux souches est analysé par dot blot et ils sont identifiés par séquençage suivient d’une analyses bioinformatiques. Les gènes identifiés par SCOTS, lors des captures pour la souche septicémique et la souche commensale, se trouvent à être des gènes communs aux Salmonella. Toutefois, la différence de pathologie causée par les deux souches, n’est peut-être pas l’acquisition de nouveaux gènes, mais plutôt une différence d’expression entre les deux souches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Cochin estuary (CE), which is one of the largest wetland ecosystems, extends from Thanneermukkam bund in the south to Azhikode in the north. It functions as an effluent repository for more than 240 industries, the characteristics of which includes fertilizer, pesticide, radioactive mineral processing, chemical and allied industries, petroleum refining and heavy metal processing industries (Thyagarajan, 2004). Studies in the CE have been mostly on the spatial and temporal variations in the physical, chemical and biological characteristics of the estuary (Balachandran et al., 2006; Madhu et al., 2007; Menon et al., 2000; Qasim 2003;Qasim and Gopinathan 1969) . Although several monitoring programs have been initiated in the CE to understand the level of heavy metal pollution, these were restricted to trace metals distribution (Balachandran et al., 2005) or the influence of anthropogenic inputs on the benthos and phytoplankton (Madhu et al., 2007;Jayaraj, 2006). Recently, few studies were carried out on microbial ecology in the CE(Thottathil et al 2008a and b;Parvathi et al., 2009and 2011; Thomas et al., 2006;Chandran and Hatha, 2003). However, studies on metal - microbe interaction are hitherto not undertaken in this estuary. Hence, a study was undertaken at 3 sites with different level of heavy metal concentration tounderstand the abundance, diversity and mechanisms of resistance in metal resistant bacteria and its impact on the nutrient regeneration. The present work has also focused on the response of heavy metal resistant bacteria towards antibacterial agent’s antibiotics and silver nanoparticles

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nas últimas décadas, a investigação de antibióticos com novos mecanismos de acção, tem vindo a ser motivada pela contínua emergência de estirpes bacterianas multirresistentes. No entanto, nos últimos anos esse desenvolvimento tem vindo a abrandar, o que representa um grave problema de saúde pública. Antes da era dos antibióticos a fagoterapia representava a terapêutica de primeira linha no tratamento de infecções bacterianas. Como a ausência de recursos impossibilitava a compreensão dos mecanismos de acção moleculares do fago, a fagoterapia era apenas sustentada pelo conhecimento empírico. A ausência de conhecimento associada ao início da era dos antibióticos foram condições suficientes para que a terapêutica fágica fosse posta de parte, à excepção de alguns países da Europa do Leste. De acordo com a literatura disponibilizada por estes países, vários têm sido os casos de sucesso no tratamento de infecções bacterianas, incluindo infecções causadas por estirpes multirresistentes aos antibióticos convencionais. No entanto, contrariamente aos ensaios clínicos, a maioria destes estudos omite informação crítica que impossibilita a interpretação dos respectivos resultados. Actualmente, as novas ferramentas oferecidas pelos avanços biotecnológicos possibilitam não só a compreensão do mecanismo de infecção bacteriana como também permitem compreender melhor a interacção entre os bacteriófagos e o organismo humano. Como tal, no futuro, a fagoterapia pode ser considerada uma alternativa efectiva para solucionar os casos críticos de multirresistência bacteriana aos antibióticos convencionais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing use of drug combinations to treat disease states, such as cancer, calls for improved delivery systems that are able to deliver multiple agents. Herein, we report a series of novel Janus dendrimers with potential for use in combination therapy. Different generations (first and second) of PEG-based dendrons containing two different “model drugs”, benzyl alcohol (BA) and 3-phenylpropionic acid (PPA), were synthesized. BA and PPA were attached via two different linkers (carbonate and ester, respectively) to promote differential drug release. The four dendrons were coupled together via (3 + 2) cycloaddition chemistries to afford four Janus dendrimers, which contained varying amounts and different ratios of BA and PPA, namely, (BA)2-G1-G1-(PPA)2, (BA)4-G2-G1-(PPA)2, (BA)2-G1-G2-(PPA)4, and (BA)4-G2-G2-(PPA)4. Release studies in plasma showed that the dendrimers provided sequential release of the two model drugs, with BA being released faster than PPA from all of the dendrons. The different dendrimers allowed delivery of increasing amounts (0.15–0.30 mM) and in exact molecular ratios (1:2; 2:1; 1:2; 2:2) of the two model drug compounds. The dendrimers were noncytotoxic (100% viability at 1 mg/mL) toward human umbilical vein endothelial cells (HUVEC) and nontoxic toward red blood cells, as confirmed by hemolysis studies. These studies demonstrate that these Janus PEG-based dendrimers offer great potential for the delivery of drugs via combination therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report our pediatric experience with lacosarnide, a new antiepileptic drug, approved by the US Food and Drug Administration as adjunctive therapy in focal epilepsy in patients more than 17 years old. We retrospectively reviewed charts for lacosamide use and seizure frequency outcome in patients with focal epilepsy (Wilcoxon signed rank test). Sixteen patients (7 boys) were identified (median dose 275 mg daily, 4.7 mg/kg daily; mean age 14.9 years, range 8-21 years). Patients were receiving a median of 2 antiepileptic drugs (interquartile range [IQR] 1.7-3) in addition to having undergone previous epilepsy surgery (n = 3), vagus nerve stimulation (n = 9), and ketogenic diet (n = 3). Causes included structural (encephalomalacia and diffuse encephalitis, 1 each; stroke in 2) and genetic abnormalities (Aarskog and Rett syndromes, 1 each) or cause not known (n = 10). Median seizure frequency at baseline was 57 per month (IQR 7-75), and after a median follow-up of 4 months (range 1-13 months) of receiving lacosamide, it was 12.5 per month (IQR 3-75), (P < 0.01). Six patients (37.5%; 3 seizure free) were classified as having disease that responded to therapy (>= 50% reduction seizure frequency) and 10 as having disease that did not respond to therapy (<50% in 3; increase in 1; unchanged in 6). Adverse events (tics, behavioral disturbance, seizure worsening, and depression with suicidal ideation in 1 patient each) prompted lacosamide discontinuation in 4/16 (25%). This retrospective study of 16 children with drug-resistant focal epilepsy demonstrated good response to adjunctive lacosamide therapy (median seizure reduction of 39.6%; 37.5% with >= 50% seizure reduction) without severe adverse events. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis (TB) remains the leading cause of mortality due to a single bacterial pathogen, Mycobacterium tuberculosis. The reemergence of TB as a potential public health threat, the high susceptibility of human immunodeficiency virus-infected persons to the disease, the proliferation of multi-drug-resistant strains (MDR-TB) and, more recently, of extensively drug resistant isolates (XDR-TB) have created a need for the development of new antimycobacterial agents. Amongst the several proteins and/or enzymes to be studied as potential targets to develop novel drugs against M. tuberculosis, the enzymes of the shikimate pathway are attractive targets because they are essential in algae, higher plants, bacteria, and fungi, but absent from mammals. The mycobacterial shikimate pathway leads to the biosynthesis of chorismate, which is a precursor of aromatic amino acids, naphthoquinones, menaquinones, and mycobactins. Here we report the structural studies by homology modeling and circular dichroism spectroscopy of the shikimate dehydrogenase from M. tuberculosis (MtSDH), which catalyses the fourth step of the shikimate pathway. Our structural models show that the MtSDH has similar structure to other shikimate dehydrogenase structures previously reported either in presence or absence of NADP, despite the low amino acid sequence identity. The circular dichroism spectra corroborate the secondary structure content observed in the MtSDH models developed. The enzyme was stable up to 50 degrees C presenting a cooperative unfolding profile with the midpoint of the unfolding temperature value of similar to 63-64 degrees C, as observed in the unfolding experiment followed by circular dichroism. Our MtSDH structural models and circular dichroism data showed small conformational changes induced by NADP binding. We hope that the data presented here will assist the rational design of antitubercular agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberculosis (TB), caused by Mycobacterium tuberculosis, remains the leading cause of mortality due to a bacterial pathogen. According to the 2004 Global TB Control Report of the World Health Organization, there are 300,000 new cases per year of multi-drug resistant strains (MDR-TB), defined as resistant to isoniazid and rifampicin, and 79% of MDR-TB cases are now super strains, resistant to at least three of the four main drugs used to treat TB. Thus there is a need for the development of effective new agents to treat TB. The shikimate pathway is an attractive target for the development of antimycobacterial agents because it has been shown to be essential for the viability of M. tuberculosis, but absent from mammals. The M. tuberculosis aroG-encoded 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (mtDAHPS) catalyzes the first committed step in this pathway. Here we describe the PCR amplification, cloning, and sequencing of aroG structural gene from M. tuberculosis H37Rv. The expression of recombinant mtDAHPS protein in the soluble form was obtained in Escherichia coli Rosetta-gami (DE3) host cells without IPTG induction. An approximately threefold purification protocol yielded homogeneous enzyme with a specific activity value of 0.47 U mg-1 under the experimental conditions used. Gel filtration chromatography results demonstrate that recombinant mtDAHPS is a pentamer in solution. The availability of homogeneous mtDAHPS will allow structural and kinetics studies to be performed aiming at antitubercular agents development. © 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Ciências Farmacêuticas - FCFAR

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The antimicrobials products from plants have increased in importance due to the therapeutic potential in the treatment of infectious diseases. Therefore, we aimed to examine the chemical characterisation (GC-MS) of essential oils (EO) from seven plants and measure antibacterial activities against bacterial strains isolated from clinical human specimens (methicillin-resistant Staphylococcus aureus (MRSA) and sensitive (MSSA), Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium) and foods (Salmonella Enteritidis). Assays were performed using the minimal inhibitory concentration (MIC and MIC90%) (mg/mL) by agar dilution and time kill curve methods (log CFU/mL) to aiming synergism between EO. EO chemical analysis showed a predominance of terpenes and its derivatives. The highest antibacterial activities were with Cinnamomun zeylanicum (0.25 mg/mL on almost bacteria tested) and Caryophyllus aronzaticus EO (2.40 mg/mL on Salmonella Enteritidis), and the lowest activity was with Eugenia uniflora (from 50.80 mg/mL against MSSA to 92.40 mg/mL against both Salmonella sources and P aeruginosa) EO. The time kill curve assays revealed the occurrence of bactericide synergism in combinations of C. aromaticus and C. zeylanicum with Rosmarinus. officinalis. Thus, the antibacterial activities of the EO were large and this can also be explained by complex chemical composition of the oils tested in this study and the synergistic effect of these EO, yet requires further investigation because these interactions between the various chemical compounds can increase or reduce (antagonism effect) the inhibitory effect of essential oils against bacterial strains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug-resistant tuberculosis (TB) is a growing global threat. Approximately 450,000 people developed multidrugresistant TB worldwide in 2012 and an estimated 170,000 people died from the disease. This paper describes the sociodemographic, clinical-epidemiological and bacteriological aspects of TB and correlates these features with the distribution of anti-TB drug resistance. Mycobacterium tuberculosis (MT) cultures and drug susceptibility testing were performed according to the BACTEC MGIT 960 method. The results demonstrated that MT strains from individuals who received treatment for TB and people who were infected with human immunodeficiency virus were more resistant to TB drugs compared to other individuals (p < 0.05). Approximately half of the individuals received supervised treatment, but most drug-resistant cases were positive for pulmonary TB and exhibited positive acid-fast bacilli smears, which are complicating factors for TB control programs. Primary healthcare is the ideal level for early disease detection, but tertiary healthcare is the most common entry point for patients into the system. These factors require special attention from healthcare managers and professionals to effectively control and monitor the spread of TB drug-resistant cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous EEG/fMRI is an effective noninvasive tool for identifying and localizing the SOZ in patients with focal epilepsy. In this study, we evaluated different thresholding strategies in EEG/fMRI for the assessment of hemodynamic responses to IEDs in the SOZ of drug-resistant epilepsy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been a rapid rise in the emergence of multi-drug-resistant pathogens in the past 10 to 15 yr and some bacteria are now resistant to most antimicrobial agents. Antibiotic use is very restricted on Swiss organic dairy farms, and a purely prophylactic use, such as for dry cow mastitis prevention, is forbidden. A low prevalence of antibiotic resistance in organic farms can be expected compared with conventional farms because the bacteria are infrequently or not exposed to antibiotics. The occurrence of antibiotic resistance was compared between mastitis pathogens (Staphylococcus aureus, nonaureus staphylococci, Streptococcus dysgalactiae, Streptococcus uberis) from farms with organic and conventional dairy production. Clear differences in the percentage of antibiotic resistance were mainly species-related, but did not differ significantly between isolates from cows kept on organic and conventional farms, except for Streptococcus uberis, which exhibited significantly more single resistances (compared with no resistance) when isolated from cows kept on organic farms (6/10 isolates) than on conventional farms (0/5 isolates). Different percentages were found (albeit not statistically significant) in resistance to ceftiofur, erythromycin, clindamycin, enrofloxacin, chloramphenicol, penicillin, oxacillin, gentamicin, tetracycline, and quinupristin-dalfopristin, but, importantly, none of the strains was resistant to amoxicillin-clavulanic acid or vancomycin. Multidrug resistance was rarely encountered. The frequency of antibiotic resistance in organic farms, in which the use of antibiotics must be very restricted, was not different from conventional farms, and was contrary to expectation. The antibiotic resistance status needs to be monitored in organic farms as well as conventional farms and production factors related to the absence of reduced antibiotic resistance in organic farms need to be evaluated.