787 resultados para Multi-agent system
Resumo:
This paper addresses the problem of automated multiagent search in an unknown environment. Autonomous agents equipped with sensors carry out a search operation in a search space, where the uncertainty, or lack of information about the environment, is known a priori as an uncertainty density distribution function. The agents are deployed in the search space to maximize single step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for the proposed sequential deploy and search strategy. It is shown that with the proposed control law the agent trajectories converge in a globally asymptotic manner to the centroidal Voronoi configuration. Simulation experiments are provided to validate the strategy. Note to Practitioners-In this paper, searching an unknown region to gather information about it is modeled as a problem of using search as a means of reducing information uncertainty about the region. Moreover, multiple automated searchers or agents are used to carry out this operation optimally. This problem has many applications in search and surveillance operations using several autonomous UAVs or mobile robots. The concept of agents converging to the centroid of their Voronoi cells, weighted with the uncertainty density, is used to design a search strategy named as sequential deploy and search. Finally, the performance of the strategy is validated using simulations.
Resumo:
In this thesis we address the problem of multi-agent search. We formulate two deploy and search strategies based on optimal deployment of agents in search space so as to maximize the search effectiveness in a single step. We show that a variation of centroidal Voronoi configuration is the optimal deployment. When the agents have sensors with different capabilities, the problem will be heterogeneous in nature. We introduce a new concept namely, generalized Voronoi partition in order to formulate and solve the heterogeneous multi-agent search problem. We address a few theoretical issues such as optimality of deployment, convergence and spatial distributedness of the control law and the search strategies. Simulation experiments are carried out to compare performances of the proposed strategies with a few simple search strategies.
Resumo:
Fault-tolerance is due to the semiconductor technology development important, not only for safety-critical systems but also for general-purpose (non-safety critical) systems. However, instead of guaranteeing that deadlines always are met, it is for general-purpose systems important to minimize the average execution time (AET) while ensuring fault-tolerance. For a given job and a soft (transient) error probability, we define mathematical formulas for AET that includes bus communication overhead for both voting (active replication) and rollback-recovery with checkpointing (RRC). And, for a given multi-processor system-on-chip (MPSoC), we define integer linear programming (ILP) models that minimize AET including bus communication overhead when: (1) selecting the number of checkpoints when using RRC, (2) finding the number of processors and job-to-processor assignment when using voting, and (3) defining fault-tolerance scheme (voting or RRC) per job and defining its usage for each job. Experiments demonstrate significant savings in AET.
Resumo:
This paper addresses the problem of multiagent search in an unknown environment. The agents are autonomous in nature and are equipped with necessary sensors to carry out the search operation. The uncertainty, or lack of information about the search area is known a priori as a probability density function. The agents are deployed in an optimal way so as to maximize the one step uncertainty reduction. The agents continue to deploy themselves and reduce uncertainty till the uncertainty density is reduced over the search space below a minimum acceptable level. It has been shown, using LaSalle’s invariance principle, that a distributed control law which moves each of the agents towards the centroid of its Voronoi partition, modified by the sensor range leads to single step optimal deployment. This principle is now used to devise search trajectories for the agents. The simulations were carried out in 2D space with saturation on speeds of the agents. The results show that the control strategy per step indeed moves the agents to the respective centroid and the algorithm reduces the uncertainty distribution to the required level within a few steps.
Resumo:
This paper presents a second order sliding mode observer (SOSMO) design for discrete time uncertain linear multi-output system. The design procedure is effective for both matched and unmatched bounded uncertainties and/or disturbances. A second order sliding function and corresponding sliding manifold for discrete time system are defined similar to the lines of continuous time counterpart. A boundary layer concept is employed to avoid switching across the defined sliding manifold and the sliding trajectory is confined to a boundary layer once it converges to it. The condition for existence of convergent quasi-sliding mode (QSM) is derived. The observer estimation errors satisfying given stability conditions converge to an ultimate finite bound (within the specified boundary layer) with thickness O(T-2) where T is the sampling period. A relation between sliding mode gain and boundary layer is established for the existence of second order discrete sliding motion. The design strategy is very simple to apply and is demonstrated for three examples with different class of disturbances (matched and unmatched) to show the effectiveness of the design. Simulation results to show the robustness with respect to the measurement noise are given for SOSMO and the performance is compared with pseudo-linear Kalman filter (PLKF). (C) 2013 Published by Elsevier Ltd. on behalf of The Franklin Institute
Resumo:
Optimal control of traffic lights at junctions or traffic signal control (TSC) is essential for reducing the average delay experienced by the road users amidst the rapid increase in the usage of vehicles. In this paper, we formulate the TSC problem as a discounted cost Markov decision process (MDP) and apply multi-agent reinforcement learning (MARL) algorithms to obtain dynamic TSC policies. We model each traffic signal junction as an independent agent. An agent decides the signal duration of its phases in a round-robin (RR) manner using multi-agent Q-learning with either is an element of-greedy or UCB 3] based exploration strategies. It updates its Q-factors based on the cost feedback signal received from its neighbouring agents. This feedback signal can be easily constructed and is shown to be effective in minimizing the average delay of the vehicles in the network. We show through simulations over VISSIM that our algorithms perform significantly better than both the standard fixed signal timing (FST) algorithm and the saturation balancing (SAT) algorithm 15] over two real road networks.
Resumo:
Social interactions in classic cognitive games like the ultimatum game or the prisoner's dilemma typically lead to Nash equilibria when multiple competitive decision makers with perfect knowledge select optimal strategies. However, in evolutionary game theory it has been shown that Nash equilibria can also arise as attractors in dynamical systems that can describe, for example, the population dynamics of microorganisms. Similar to such evolutionary dynamics, we find that Nash equilibria arise naturally in motor interactions in which players vie for control and try to minimize effort. When confronted with sensorimotor interaction tasks that correspond to the classical prisoner's dilemma and the rope-pulling game, two-player motor interactions led predominantly to Nash solutions. In contrast, when a single player took both roles, playing the sensorimotor game bimanually, cooperative solutions were found. Our methodology opens up a new avenue for the study of human motor interactions within a game theoretic framework, suggesting that the coupling of motor systems can lead to game theoretic solutions.