933 resultados para Mouse and chicken cardiogenesis
Resumo:
A general overview of the protein sequence set for the mouse transcriptome produced during the FANTOM2 sequencing project is presented here. We applied different algorithms to characterize protein sequences derived from a nonredundant representative protein set (RPS) and a variant protein set (VPS) of the mouse transcriptome. The functional characterization and assignment of Gene Ontology terms was done by analysis of the proteome using InterPro. The Superfamily database analyses gave a detailed structural classification according to SCOP and provide additional evidence for the functional characterization of the proteome data. The MDS database analysis revealed new domains which are not presented in existing protein domain databases. Thus the transcriptome gives us a unique source of data for the detection of new functional groups. The data obtained for the RPS and VPS sets facilitated the comparison of different patterns of protein expression. A comparison of other existing mouse and human protein sequence sets (e.g., the International Protein Index) demonstrates the common patterns in mammalian proteornes. The analysis of the membrane organization within the transcriptome of multiple eukaryotes provides valuable statistics about the distribution of secretory and transmembrane proteins
Resumo:
OBJECTIVE To analyze if dietary patterns during the third gestational trimester are associated with birth weight.METHODS Longitudinal study conducted in the cities of Petropolis and Queimados, Rio de Janeiro (RJ), Southeastern Brazil, between 2007 and 2008. We analyzed data from the first and second follow-up wave of a prospective cohort. Food consumption of 1,298 pregnant women was assessed using a semi-quantitative questionnaire about food frequency. Dietary patterns were obtained by exploratory factor analysis, using the Varimax rotation method. We also applied the multivariate linear regression model to estimate the association between food consumption patterns and birth weight.RESULTS Four patterns of consumption – which explain 36.4% of the variability – were identified and divided as follows: (1) prudent pattern (milk, yogurt, cheese, fruit and fresh-fruit juice, cracker, and chicken/beef/fish/liver), which explained 14.9% of the consumption; (2) traditional pattern, consisting of beans, rice, vegetables, breads, butter/margarine and sugar, which explained 8.8% of the variation in consumption; (3) Western pattern (potato/cassava/yams, macaroni, flour/farofa/grits, pizza/hamburger/deep fried pastries, soft drinks/cool drinks and pork/sausages/egg), which accounts for 6.9% of the variance; and (4) snack pattern (sandwich cookie, salty snacks, chocolate, and chocolate drink mix), which explains 5.7% of the consumption variability. The snack dietary pattern was positively associated with birth weight (β = 56.64; p = 0.04) in pregnant adolescents.CONCLUSIONS For pregnant adolescents, the greater the adherence to snack pattern during pregnancy, the greater the baby’s birth weight.
Resumo:
In this work we explored the role of the 3'UTR of the MECP2 gene in patients with clinical diagnosis of RTT and mental retardation; focusing on regions of the 3'UTR with almost 100% conservation at the nucleotide level among mouse and human. By mutation scanning (DOVAM-S technique) the MECP2 3'UTR of a total of 66 affected females were studied. Five3'UTR variants in the MECP2 were found (c.1461+9G>A, c.1461+98insA, c.2595G>A, c.9961C>G and c.9964delC) in our group of patients. None of the variants found is located in putative protein-binding sites nor predicted to have a pathogenic role. Our data suggest that mutations in this region do not account for a large proportion of the RTT cases without a genetic explanation.
Resumo:
Modification of the immune response to schistosomal infection in children or offspring born to mother R infected with Schistosoma mansoni has been demonstrated in human and in experimental schistosomiasis. One of the hypothesis to explain this fact could be the transfer of circulating antigens and antibodies from mother to foetus through the placenta or from mother to child by milk. The results of this spontaneous transference are controversial in the literature. In an attempt to investigate these questions, we studied one hundred and twenty offspring (Swiss mice), sixty born to infected-mothers (group A) and sixty born to non-infected mothers (group B). These were percutaneously infected with 50 cercariae/mouse, and divided in six sub-groups (20 mice/sub-group), according to the following schedule: after birth (sub-groups A.I and B.I), 10 days old (sub-groups A.II and B.II) and 21 days old (sub-groups A.III and B.III). After the exposure period, the young mice returned to their own mothers for nursing. Six weeks later, the mice were killed. We obtained the following results: 1) There is transference of antibody to cercariae (CAP), adult worms (SWAP) and egg antigens (SEA) from the infected mothers to the offspring, probably through placenta and milk; 2) Offspring born to infected mothers exhibit much less coagulative hepatic necrosis and show a lower number of eggs in the small intestine and a less intense and predominant exsudative stage of the hepatic granulomas when compared with the exsudative-productive stage of the control groups. The findings suggest that congenital and nursing factors can interfere on the development of the schistosomiasis infection, causing an hyporesponse to the eggs.
Resumo:
The haemolymph of Panstrongylus megistus showed a natural lectin activity for a wide range of vertebrate erythocytes. Agglutination was observed against all vertebrate erythrocytes tested (human ABO, duck, rabbit, mouse, sheep, chicken and cow). Cow erythrocytes showed the lowest titre. Concerning human erythrocytes, the lectin activity was similar in the types A+,B+ and AB+ while the highest activity was observed in the type O+. Determination of minimal inhibitory concentrations was carried out with human erythrocytes type O+. Agglutination was inhibited by several carbohydrates (rhamnose. D-galatose, raffinose, D-lactose and D-fucose). Rhamnose wasreported as the strongest inhibitor (0.78mM). The results suggest the presence of more than one lection in the haemolymph of P. megistus.
Resumo:
Sirtuins (SIRT1-7) are NAD(+)-dependent histone deacetylases (HDACs) that play an important role in the control of metabolism and proliferation and the development of age-associated diseases like oncologic, cardiovascular and neurodegenerative diseases. Cambinol was originally described as a compound inhibiting the activity of SIRT1 and SIRT2, with efficient anti-tumor activity in vivo. Here, we studied the effects of cambinol on microbial sensing by mouse and human immune cells and on host innate immune responses in vivo. Cambinol inhibited the expression of cytokines (TNF, IL-1β, IL-6, IL-12p40, and IFN-γ), NO and CD40 by macrophages, dendritic cells, splenocytes and whole blood stimulated with a broad range of microbial and inflammasome stimuli. Sirtinol, an inhibitor of SIRT1 and SIRT2 structurally related to cambinol, also decreased macrophage response to TLR stimulation. On the contrary, selective inhibitors of SIRT1 (EX-527 and CHIC-35) and SIRT2 (AGK2 and AK-7) used alone or in combination had no inhibitory effect, suggesting that cambinol and sirtinol act by targeting more than just SIRT1 and SIRT2. Cambinol and sirtinol at anti-inflammatory concentrations also did not inhibit SIRT6 activity in in vitro assay. At the molecular level, cambinol impaired stimulus-induced phosphorylation of MAPKs and upstream MEKs. Going well along with its powerful anti-inflammatory activity, cambinol reduced TNF blood levels and bacteremia and improved survival in preclinical models of endotoxic shock and septic shock. Altogether, our data suggest that pharmacological inhibitors of sirtuins structurally related to cambinol may be of clinical interest to treat inflammatory diseases.
Resumo:
AbstractBACKGROUND: KRAB-ZFPs (Krüppel-associated box domain-zinc finger proteins) are vertebrate-restricted transcriptional repressors encoded in the hundreds by the mouse and human genomes. They act via an essential cofactor, KAP1, which recruits effectors responsible for the formation of facultative heterochromatin. We have recently shown that KRAB/KAP1 can mediate long-range transcriptional repression through heterochromatin spreading, but also demonstrated that this process is at times countered by endogenous influences.METHOD: To investigate this issue further we used an ectopic KRAB-based repressor. This system allowed us to tether KRAB/KAP1 to hundreds of euchromatic sites within genes, and to record its impact on gene expression. We then correlated this KRAB/KAP1-mediated transcriptional effect to pre-existing genomic and chromatin structures to identify specific characteristics making a gene susceptible to repression.RESULTS: We found that genes that were susceptible to KRAB/KAP1-mediated silencing carried higher levels of repressive histone marks both at the promoter and over the transcribed region than genes that were insensitive. In parallel, we found a high enrichment in euchromatic marks within both the close and more distant environment of these genes.CONCLUSION: Together, these data indicate that high levels of gene activity in the genomic environment and the pre-deposition of repressive histone marks within a gene increase its susceptibility to KRAB/KAP1-mediated repression.
Resumo:
AIM/HYPOTHESIS: Endoplasmic reticulum (ER) stress, which is involved in the link between inflammation and insulin resistance, contributes to the development of type 2 diabetes mellitus. In this study, we assessed whether peroxisome proliferator-activated receptor (PPAR)β/δ prevented ER stress-associated inflammation and insulin resistance in skeletal muscle cells. METHODS: Studies were conducted in mouse C2C12 myotubes, in the human myogenic cell line LHCN-M2 and in skeletal muscle from wild-type and PPARβ/δ-deficient mice and mice exposed to a high-fat diet. RESULTS: The PPARβ/δ agonist GW501516 prevented lipid-induced ER stress in mouse and human myotubes and in skeletal muscle of mice fed a high-fat diet. PPARβ/δ activation also prevented thapsigargin- and tunicamycin-induced ER stress in human and murine skeletal muscle cells. In agreement with this, PPARβ/δ activation prevented ER stress-associated inflammation and insulin resistance, and glucose-intolerant PPARβ/δ-deficient mice showed increased phosphorylated levels of inositol-requiring 1 transmembrane kinase/endonuclease-1α in skeletal muscle. Our findings demonstrate that PPARβ/δ activation prevents ER stress through the activation of AMP-activated protein kinase (AMPK), and the subsequent inhibition of extracellular-signal-regulated kinase (ERK)1/2 due to the inhibitory crosstalk between AMPK and ERK1/2, since overexpression of a dominant negative AMPK construct (K45R) reversed the effects attained by PPARβ/δ activation. CONCLUSIONS/INTERPRETATION: Overall, these findings indicate that PPARβ/δ prevents ER stress, inflammation and insulin resistance in skeletal muscle cells by activating AMPK.
Resumo:
Micro-RNAs (miRNAs) are key, post-transcriptional regulators of gene expression and have been implicated in almost every cellular process investigated thus far. However, their role in sleep, in particular the homeostatic aspect of sleep control, has received little attention. We here assessed the effects of sleep deprivation on the brain miRNA transcriptome in the mouse. Sleep deprivation affected miRNA expression in a brain-region specific manner. The forebrain expression of the miRNA miR-709 was affected the most and in situ analyses confirmed its robust increase throughout the brain, especially in the cerebral cortex and the hippocampus. The hippocampus was a major target of the sleep deprivation affecting 37 miRNAs compared to 52 in the whole forebrain. Moreover, independent from the sleep deprivation condition, miRNA expression was highly region-specific with 45% of all expressed miRNAs showing higher expression in hippocampus and 55% in cortex. Next we demonstrated that down-regulation of miRNAs in Com/c2o-expressing neurons of adult mice, through a conditional and inducible Dicer knockout mice model (cKO), results in an altered homeostatic response after sleep deprivation eight weeks following the tamoxifen-induced recombination. Dicer cKO mice showed a larger increase in the electro-encephalographic (EEG) marker of sleep pressure, EEG delta power, and a reduced Rapid Eye Movement sleep rebound, compared to controls, highlighting a functional role of miRNAs in sleep homeostasis. Beside a sleep phenotype, Dicer cKO mice developed an unexpected, severe obesity phenotype associated with hyperphagia and altered metabolism. Even more surprisingly, after reaching maximum body weight 5 weeks after tamoxifen injection, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling), as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin). A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we here present a unique model that allows for the study of processes involved in reversing obesity. Moreover, our study identified the cortex as a brain area important for body weight homeostasis. Together, these observations strongly suggest a role for miRNAs in the maintenance of homeostatic processes in the mouse, and support the hypothesis of a tight relationship between sleep and metabolism at a molecular - Les micro-ARNS (miARNs) sont des régulateurs post-transcriptionnels de l'expression des gènes, impliqués dans la quasi-totalité des processus cellulaires. Cependant, leur rôle dans la régulation du sommeil, et en particulier dans le maintien de l'homéostasie du sommeil, n'a reçu que très peu d'attention jusqu'à présent. Dans cette étude, nous avons étudié les conséquences d'une privation de sommeil sur l'expression cérébrale des miARNs chez la souris, et observé des changements dans l'expression de nombreux miARNs. Dans le cerveau antérieur, miR-709 est le miARN le plus affecté par la perte de sommeil, en particulier dans le cortex cérébral et l'hippocampe. L'hippocampe est la région la plus touchée avec 37 miARNs changés comparés à 52 dans le cerveau entier. Par ailleurs, indépendamment de la privation de sommeil, certains miARNs sont spécifiquement enrichis dans certaines aires cérébrales, 45% des miARNs étant surexprimés dans l'hippocampe contre 55% dans le cortex. Dans une seconde étude, nous avons observé que la délétion de DICER, enzyme essentielle à la biosynthèse des miARNs, et la perte subséquente des miARNs dans les neurones exprimant la protéine CAMK2a altère la réponse homéostatique à une privation de sommeil, 8 semaines après l'induction de la recombinaison génétique par le tamoxifen. Les souris sans Dicer (cKO) ont une plus large augmentation de l'EEG delta power, le principal marqueur électro-encéphalographique du besoin de sommeil, comparée aux contrôles, ainsi qu'un rebond en sommeil paradoxal plus petit. De façon surprenante, les souris Dicer cKO développent une obésité rapide, sévère et transitoire, associée à de l'hyperphagie et une altération de leur métabolisme énergétique. Après avoir atteint un pic maximal d'obésité, les souris cKO entrent spontanément dans une période de perte de poids rapide. L'analyse du transcriptome cérébral des souris obèses nous a permis d'identifier des voies associées à l'obésité (leptine, somatostatine et nemo-like kinase), et à la prise alimentaire (Pmch, Neurotensin), tandis que celui des souris post-obèses a révélé un groupe de gènes liés à la plasticité synaptique. Au-delà des nombreux modèles d'obésité existant chez la souris, notre étude présente un modèle unique permettant d'étudier les mécanismes sous-jacent la perte de poids. De plus, nous avons mis en évidence un rôle important du cortex cérébral dans le maintien de la balance énergétique. En conclusion, toutes ces observations soutiennent l'idée que les miARNs sont des régulateurs cruciaux dans le maintien des processus homéostatiques et confortent l'hypothèse d'une étroite relation moléculaire entre le sommeil et le métabolisme.
Resumo:
In pancreatic beta-cells, the high Km glucose transporter GLUT2 catalyzes the first step in glucose-induced insulin secretion by glucose uptake. Expression of the transporter has been reported to be modulated by glucose either at the protein or mRNA levels. In this study we used the differentiated insulinoma cell line INS-1 which expresses high levels of GLUT2 and show that the expression of GLUT2 is regulated by glucose at the transcriptional level. By run-on transcription assays we showed that glucose induced GLUT2 gene transcription 3-4-fold in INS-1 cells which was paralleled by a 1.7-2.3-fold increase in cytoplasmic GLUT2 mRNA levels. To determine whether glucose regulatory sequences were present in the promoter region of GLUT2, we cloned and characterized a 1.4-kilobase region of mouse genomic DNA located 5' of the translation initiation site. By RNase protection assays and primer extension, we determined that multiple transcription initiation sites were present at positions -55, -64, and -115 from the first coding ATG and which were identified in liver, intestine, kidney, and beta-cells mRNAs. Plasmids were constructed with the mouse promoter region linked to the reporter gene chloramphenicol acetyltransferase (CAT), and transiently and stably transfected in the INS-1 cells. Glucose induced a concentration-dependent increase in CAT activity which reached a maximum of 3.6-fold at 20 mM glucose. Similar CAT constructs made of the human GLUT2 promoter region and the CAT gene displayed the same glucose-dependent increase in transcriptional activity when transfected into INS-1 cells. Comparison of the mouse and human promoter regions revealed sequence identity restricted to a few stretches of sequences which suggests that the glucose responsive element(s) may be conserved in these common sequences.
Resumo:
Previous reports from our group have established that the fetal ovine gamma globin chain (Hbgamma) and LPS can synergize in the induction of pro-inflammatory cytokines, especially TNFalpha, from mouse and human leukocytes. A fetal sheep liver extract (FSLE) which was observed to have marked immunoregulatory properties in vivo and in vitro had independently been observed to contain significant amounts of each of these molecules. However, the biological activity of this extract (hereafter FSLE) was not explained solely by its content of Hbgamma and LPS, and independent analysis confirmed also the presence of migration inhibitory factor, MIF, and glutathione in FSLE. We have investigated whether MIF and the cellular anti-oxidant glutathione can further synergize with Hbgamma and LPS in TNFalpha induction from human cells in vitro, and mouse cells activated in vivo/in vitro. Our data show that indeed there is evidence for such a synergy. Treatment or mouse cells with FSLE produced an enhanced TNFalpha production which could be inhibited independently both by anti-Hbgamma and by anti-MIF, and optimally by a combination of these reagents.
Resumo:
This survey provides a snap shot of the nutritional content of potato and chicken products sold in fast food and convenience outlets across the island of Ireland.
Resumo:
Pendant ma thèse de doctorat, j'ai utilisé des espèces modèles, comme la souris et le poisson-zèbre, pour étudier les facteurs qui affectent l'évolution des gènes et leur expression. Plus précisément, j'ai montré que l'anatomie et le développement sont des facteurs clés à prendre en compte, car ils influencent la vitesse d'évolution de la séquence des gènes, l'impact sur eux de mutations (i.e. la délétion du gène est-elle létale ?), et leur tendance à se dupliquer. Où et quand il est exprimé impose à un gène certaines contraintes ou au contraire lui donne des opportunités d'évoluer. J'ai pu comparer ces tendances aux modèles classiques d'évolution de la morphologie, que l'on pensait auparavant refléter directement les contraintes s'appliquant sur le génome. Nous avons montré que les contraintes entre ces deux niveaux d'organisation ne peuvent pas être transférées simplement : il n'y a pas de lien direct entre la conservation du génotype et celle de phénotypes comme la morphologie. Ce travail a été possible grâce au développement d'outils bioinformatiques. Notamment, j'ai travaillé sur le développement de la base de données Bgee, qui a pour but de comparer l'expression des gènes entre différentes espèces de manière automatique et à large échelle. Cela implique une formalisation de l'anatomie, du développement et de concepts liés à l'homologie grâce à l'utilisation d'ontologies. Une intégration cohérente de données d'expression hétérogènes (puces à ADN, marqueurs de séquence exprimée, hybridations in situ) a aussi été nécessaire. Cette base de données est mise à jour régulièrement et disponible librement. Elle devrait contribuer à étendre les possibilités de comparaison de l'expression des gènes entre espèces pour des études d'évo-devo (évolution du développement) et de génomique. During my PhD, I used model species of vertebrates, such as mouse and zebrafish, to study factors affecting the evolution of genes and their expression. More precisely I have shown that anatomy and development are key factors to take into account, influencing the rate of gene sequence evolution, the impact of mutations (i.e. is the deletion of a gene lethal?), and the propensity of a gene to duplicate. Where and when genes are expressed imposes constraints, or on the contrary leaves them some opportunity to evolve. We analyzed these patterns in relation to classical models of morphological evolution in vertebrates, which were previously thought to directly reflect constraints on the genomes. We showed that the patterns of evolution at these two levels of organization do not translate smoothly: there is no direct link between the conservation of genotype and phenotypes such as morphology. This work was made possible by the development of bioinformatics tools. Notably, I worked on the development of the database Bgee, which aims at comparing gene expression between different species in an automated and large-scale way. This involves the formalization of anatomy, development, and concepts related to homology, through the use of ontologies. A coherent integration of heterogeneous expression data (microarray, expressed sequence tags, in situ hybridizations) is also required. This database is regularly updated and freely available. It should contribute to extend the possibilities for comparison of gene expression between species in evo-devo and genomics studies.
Resumo:
Malaria is one of the most important tropical and infectious diseases causing many deaths and enormous social and economic consequences, particularly in the developing countries. Despite of widely use of anti-malaria drugs and insecticide, the development of successful vaccines constitutes one of the main strategies to control malaria transmission. Several proteins expressed from blood stage such as merozoite surface proteins (MSP] or liver stage as circumsporozoite protein (CSP) are shown to be the targets of immune responses in humans and in animals. Thus, several studies have illustrated that natural infection and laboratory immunizations of humans and animals with Plasmodium sporozoite (SPZ) and its derivate-proteins (peptides) can elicit protection and control of parasite infection. However, a clear understanding of immune response against defined Plasmodium proteins should be the prerequisite conditions before any development of appropriate vaccines. In this order, our study focused on the immune responses to MSP2 (dimorphic and C-terminal fragments) in human and mice; and the mechanisms by which mouse infected hepatocytes present Plasmodium antigens to CD8+ T-cells to induce protective immunity in mice.¦The first part of this work shows that infected hepatocytes can present Plasmodium antigens to PbCSP-specific CD8+ T-cells and induce a protective immunity in mice. Here, this was addressed in vivo and showed that the infected hepatocytes were able of stimulating of primed-and naive-CD8+ T-cell clones and induced fully protective immunity against SPZ challenge. The role of infected hepatocytes in antigen presentation was illustrated here by their graft into immuno-deficient mice and depletion of cosspresenting dentritic cells (DCs) that are known to have key role in the activation of CD8+ T-cells during the liver cycle stage of Plasmodium.¦The second part of this project concerned the fine specificity of Ab responses regarding D and C regions of the two allelic families of MSP2 (3D7 and FC27). Covering of the two regions by overlapping-20 mers led to delineate the epitopes in the different endemic areas and different age groups of donors. The major epitopes characterizing D or C regions were conserved in different endemic areas (P12/P13 and P15/P16 for the 3D7-D, P23/24 and P25/26 for the FC27-D; P29/P30 for the C region). This offers thus, the possibility of a multi-epitope vaccine design including the major epitopes from the two domains of the two allelic MSP2 families. On the other, the 20 mers, particularly some major epitopes of the 3D7-Dregion (P12, P13 and P16) belonged to the epitopes that presented a high probability to be associated with protection in the children group [1 to 5 year-old). In addition, D and C LSP purified Abs (pAbs) recognized merozoite derived polypeptides and native proteins. A crossreactivity activity of homologous pAbs against the heterologous was also illustrated between the two allelic MSP2 parasites. Finally, the functional analysis of D regions pAbs showed an inhibition of Plasmodium falciparum growth suggesting the functional biological activity of the D region pAbs in the control of malaria.¦The last part of this project aimed the evaluation of the immunogenicity of the D and C region LSPs of the two allelic MSP2 families in the presence of adjuvants for the possible use in clinical trial study in humans. The MSP2 LSP mixture showed that D and C were immunogenic and defined limited epitopes (whose intensity of immune responses) depending on the adjuvants and mouse strain for the D regions. The major epitopes characterizing the C region were usually conserved in different strains of mouse and adjuvants used. Furthermore, the single region (either with D or C) immunization of mice confirmed the immunogenicity and the presence of their limited epitopes. We concluded that the possibility to finely delineate in animals the immune responses to antigens might help to select optimal antigen/adjuvant combinations to be tested later in clinical trials. Thus, formulation of glucopyranosyl-lipid A stable emulsion, GLA-SE (toll like receptor (TLR) 4 agonist) and its different combination (CpG: TLR9 agonist and GDQ: LR7 agonist) with MSP2 LSP was better than with alum, montanide ISA 720 (Mt) and virosome. Immunization of mice with allelic LSP did not show a crossreactivity between the two allelic MSP2 parasites unlike as humans, suggesting that the crossreactivity could be acquired during natural infection of the population who are usually exposed to both allelic parasite forms (3D7 and FC27).¦Nevertheless, similar epitope of D (P12, P13 and P25) and C (P29) regions have been found both in mice and human. This offers an opportunity to compare their epitopes in naïve immunized donors with LSPs and naturally infected populations in the endemic areas.
Resumo:
AIMS/HYPOTHESIS: In insulin-secreting cells, activation of the c-Jun NH(2)-terminal kinase (JNK) pathway triggers apoptosis. Whereas JNK1 and JNK2 are ubiquitously produced, JNK3 has been described exclusively in neurons. This report aims to characterise the expression and role in apoptosis of the three JNK isoforms in insulin-secreting cells exposed to cytokines. METHODS: Sections of human and mouse pancreases were used for immunohistochemistry studies with isoform-specific anti-JNK antibodies. Human, pig, mouse and rat pancreatic islets were isolated by enzymatic digestion and RNA or protein extracts were prepared. RNA and protein levels were determined by quantitative RT-PCR and western blotting respectively, using JNK-isoform-specific primers and isoform-specific antibodies; activities of the three JNK isoforms were determined by kinase assays following quantitative immunoprecipitation/depletion of JNK3. JNK silencing was performed with small interfering RNAs and apoptotic rates were determined in INS-1E cells by scoring cells displaying pycnotic nuclei. RESULTS: JNK3 and JNK2 mRNAs are the predominant isoforms expressed in human pancreatic islets. JNK3 is nuclear while JNK2 is also cytoplasmic. In INS-1E cells, JNK3 knockdown increases c-Jun levels and caspase-3 cleavage and sensitises cells to cytokine-induced apoptosis; in contrast, JNK1 or JNK2 knockdown is protective. CONCLUSIONS/INTERPRETATION: In insulin-secreting cells, JNK3 plays an active role in preserving pancreatic beta cell mass from cytokine attacks. The specific localisation of JNK3 in the nucleus, its recruitment by cytokines, and its effects on key transcription factors such as c-Jun, indicate that JNK3 is certainly an important player in the transcriptional control of genes expressed in insulin-secreting cells.