982 resultados para Moscou (Russia)
Resumo:
Es una de las cuatro unidades del curso de preparación para los exámenes del General Certificate Secondary Education (GCSE). Estos temas explican los acontecimientos históricos sucedidos en los últimos cien años y ayudan a entender los problemas del mundo actual. Esta unidad estudia los cambios producidos en Rusia entre la revolución de 1917 y el comienzo de la Segunda Guerra Mundial, así como los cambios económicos y sociales derivados de la victoria del gobierno comunista y la dictadura de Stalin. Una parte del libro se dedica al repaso y la preparación del examen.
Resumo:
Cumple con los requisitos para la especificación OCR A2 de Historia, unidad F966, opción A. Su contenido estudia la naturaleza del gobierno de Rusia y de sus gobernantes y el impacto de los regímenes dictatoriales sobre la economía y la sociedad del país, así como los efectos de la guerra y la revolución en la evolución del estado ruso. Este recurso comprende actividades que ayudan a la comprensión de su contenido y a desarrollar en los estudiantes habilidades con la historia, análisis de situaciones y acontecimientos, breves biografías de personajes clave de la época, definiciones de palabras nuevas y consejos prácticos para los exámenes.
Resumo:
Esta guía ha sido escrita por un examinador y explica los requisitos de cada unidad, resume el contenido relevante de cada unidad e incluye una serie de preguntas y respuestas. Cumple los requisitos establecidos para aprobar el examen de historia del nivel Edexcel AS que pertenece al segundo ciclo de enseñanza secundaria. El tema principal del libro es la Rusia de Stalin, 1924-53, los otros temas que trata el libro son: la lucha por el liderazgo, la economía en 1930, las políticas sociales de Stalin, terror y propaganda en la Rusia de Stalin, la guerra mundial y la guerra fría.
Resumo:
Esta guía ha sido escrita por un examinador y explica los requisitos de cada unidad, resume el contenido relevante de cada unidad e incluye una serie de preguntas y respuestas. Cumple los requisitos establecidos para aprobar el examen de historia del nivel Edexcel AS que pertenece al segundo ciclo de enseñanza secundaria. El tema principal del libro es Rusia en la revolución, 1881-1924, de la autocracia a la dictadura, los otros temas del libro son: Rusia en 1881, la realización de la revolución 1881-1905, la revolución de 1905, la caída del régimen zarista 1905-17, el fracaso del gobierno provisional de 1917, Lenin en el poder: 1917-24.
Resumo:
This paper explains the conflictive and cooperative elements of energy diplomacy between the European Union (EU) and Russia. It argues that interdependence forms the underlying principle of this relationship and creates both sensitivity and vulnerability for the interdependent parties, thus carrying the sperms of both conflict and cooperation. Both sides would be negatively affected by the other side’s noncooperation within the current policy framework and the prevailing mistrust and recurring tensions can be explained by this sensitivity. However, even if both sides’ policies were adjusted, vulnerability interdependence would still prevent them from seriously reducing their energy cooperation. It is necessary then to see how EU and Russian energy diplomacy can converge and how their strategic energy partnership can be cemented.
Resumo:
Long-term trends, interannual and intra-seasonal variability in the mass-balance record from Djankuat glacier, central Greater Caucasus, Russia, are related to local climate change, synoptic and large-scale anomalies in atmospheric circulation. A clear warming signal emerged in the central Greater Caucasus in the early 1990s, leading to a strong increase in ablation. In the absence of a compensating change in winter accumulation, the net mass balance of Djankuat has declined. The highest value of seasonal ablation on record was registered in the summer of 2000. At the beginning of the 21st century these trends reversed. Ablation was below average even in the summer of 2003, which was unusually warm in western Europe. Precipitation and winter accumulation were high, allowing for a partial recovery of net mass balance. The interannual variability in the components of mass balance is weakly related to the North Atlantic Oscillation (NAO) and the Scandinavian teleconnection patterns, but there is a clear link with the large-scale circulation anomalies represented by the Rossby pattern. Five synoptic categories have been identified for the ablation season of 2005, revealing a strong separation between components of radiation budget, air temperature and daily melt. Air temperature is the main control over melt. The highest values of daily ablation are related to the strongly positive NAO which forces high net radiation, and to the warm and moist advection from the Black Sea.
Resumo:
This paper reports recent changes in the mass balance record from the Djankuat Glacier, central greater Caucasus, Russia, and investigates possible relationships between the components of mass balance, local climate, and distant atmospheric forcing. The results clearly show that a strong warming signal has emerged in the central greater Caucasus, particularly since the 1993/1994 mass balance year, and this has led to a significant increase in the summer ablation of Djankuat. At the same time, there has been no compensating consistent increase in winter precipitation and accumulation leading to the strong net loss of mass and increase in glacier runoff. Interannual variability in ablation and accumulation is partly associated with certain major patterns of Northern Hemisphere climatic variability. The positive phase of the North Pacific (NP) teleconnection pattern forces negative geopotential height and temperature anomalies over the Caucasus in summer and results in reduced summer melt, such as in the early 1990s, when positive NP extremes resulted in a temporary decline in ablation rates. The positive phase of the NP is related to El Nino-Southern Oscillation, and it is possible that a teleconnection between the tropical Pacific sea surface temperatures and summer air temperatures in the Caucasus is bridged through the NP pattern. More recently, the NP pattern was predominantly negative, and this distant moderating forcing on summer ablation in the Caucasus was absent. Statistically significant correlations are observed between accumulation and the Scandinavian (SCA) teleconnection pattern. The frequent occurrence of the positive SCA phase at the beginning of accumulation season results in lower than average snowfall and reduced accumulation. The relationship between the North Atlantic Oscillation (NAO), Arctic Oscillation, and accumulation is weak, although positive precipitation anomalies in the winter months are associated with the negative phase of the NAO. A stronger positive correlation is observed between accumulation on Djankuat and geopotential height over the Bay of Biscay unrelated to the established modes of the Northern Hemisphere climatic variability. These results imply that the mass balance of Djankuat is sensitive to the natural variability in the climate system. Distant forcing, however, explains only 16% of the variance in the ablation record and cannot fully explain the recent increase in ablation and negative mass balance.
Resumo:
Glaciers occupy an area of similar to 1600 km(2) in the Caucasus Mountains. There is widespread evidence of retreat since the Little Ice Age, but an up-to-date regional assessment of glacier change is lacking. In this paper, satellite imagery (Landsat Thematic Mapper and Enhanced Thematic Mapper Plus) is used to obtain the terminus position of 113 glaciers in the central Caucasus in 1985 and 2000, using a manual delineation process based on a false-colour composite (bands 5, 4, 3). Measurements reveal that 94% of the glaciers have retreated, 4% exhibited no overall change and 2% advanced. The mean retreat rate equates to similar to 8 m a(-1), and maximum retreat rates approach similar to 38 m a(-1). The largest (>10 km(2)) glaciers retreated twice as much (similar to 12 m a(-1)) as the smallest (<1 km(2)) glaciers (similar to 6 m a(-1)), and glaciers at lower elevations generally retreated greater distances. Supraglacial debris cover has increased in association with glacier retreat, and the surface area of bare ice has reduced by similar to 10% between 1985 and 2000. Results are compared to declassified Corona imagery from the 1960s and 1970s and detailed field measurements and mass-balance data for Djankuat glacier, central Caucasus. It is concluded that the decrease in glacier area appears to be primarily driven by increasing temperatures since the 1970s and especially since the mid-1990s. Continued retreat could lead to considerable changes in glacier runoff, with implications for regional water resources.
Resumo:
This paper reports changes in supraglacial debris cover and supra-/proglacial lake development associated with recent glacier retreat (1985-2000) in the central Caucasus Mountains, Russia. Satellite imagery (Landsat TM and ETM+) was used to map the surface area and supraglacial debris cover on six neighbouring glaciers in the Adylsu valley through a process of manual digitizing on a false-colour composite of bands 5, 4, 3 (red, green, blue). The distribution and surface area of supraglacial and proglacial lakes was digitized for a larger area, which extended to the whole Landsat scene. We also compare our satellite interpretations to field observations in the Adylsu valley. Supraglacial debris cover ranges from < 5% to > 25% on individual glaciers, but glacier retreat between 1985 and 2000 resulted in a 3-6% increase in the proportion of each glacier covered by debris. The only exception to this trend was a very small glacier where debris cover did not change significantly and remote mapping proved more difficult. The increase in debris cover is characterized by a progressive upglacier migration, which we suggest is being driven by focused ablation (and therefore glacier thinning) at the up-glacier limit of the debris cover, resulting in the progressive exposure of englacial debris. Glacier retreat has also been accompanied by an increase in the number of proglacial and supraglacial lakes in our study area, from 16 in 1985 to 24 in 2000, representing a 57% increase in their cumulative surface area. These lakes appear to be impounded by relatively recently lateral and terminal moraines and by debris deposits on the surface of the glacier. The changes in glacier surface characteristics reported here are likely to exert a profound influence on glacier mass balance and their future response to climate change. They may also increase the likelihood of glacier-related hazards (lake outbursts, debris slides), and future monitoring is recommended.