370 resultados para Morphine péridurale
Resumo:
The mesolimbic dopamine system, which arises in the ventral tegmental area (VTA), is an important neural substrate for opiate reinforcement and addiction. Chronic exposure to opiates is known to produce biochemical adaptations in this brain region. We now show that these adaptations are associated with structural changes in VTA dopamine neurons. Individual VTA neurons in paraformaldehyde-fixed brain sections from control or morphine-treated rats were injected with the fluorescent dye Lucifer yellow. The identity of the injected cells as dopaminergic or nondopaminergic was determined by immunohistochemical labeling of the sections for tyrosine hydroxylase. Chronic morphine treatment resulted in a mean approximately 25% reduction in the area and perimeter of VTA dopamine neurons. This reduction in cell size was prevented by concomitant treatment of rats with naltrexone, an opioid receptor antagonist, as well as by intra-VTA infusion of brain-derived neurotrophic factor. In contrast, chronic morphine treatment did not alter the size of nondopaminergic neurons in the VTA, nor did it affect the total number of dopaminergic neurons in this brain region. The results of these studies provide direct evidence for structural alterations in VTA dopamine neurons as a consequence of chronic opiate exposure, which could contribute to changes in mesolimbic dopamine function associated with addiction.
Resumo:
The nucleus accumbens is considered a critical target of the action of drugs of abuse. In this nucleus a "shell" and a "core" have been distinguished on the basis of anatomical and histochemical criteria. The present study investigated the effect in freely moving rats of intravenous cocaine, amphetamine, and morphine on extracellular dopamine concentrations in the nucleus accumbens shell and core by means of microdialysis with vertically implanted concentric probes. Doses selected were in the range of those known to sustain drug self-administration in rats. Morphine, at 0.2 and 0.4 mg/kg, and cocaine, at 0.5 mg/kg, increased extracellular dopamine selectivity in the shell. Higher doses of cocaine (1.0 mg/kg) and the lowest dose of amphetamine tested (0.125 mg/kg) increased extracellular dopamine both in the shell and in the core, but the effect was significantly more pronounced in the shell compared with the core. Only the highest dose of amphetamine (0.250 mg/kg) increased extracellular dopamine in the shell and in the core to a similar extent. The present results provide in vivo neurochemical evidence for a functional compartmentation within the nucleus accumbens and for a preferential effect of psychostimulants and morphine in the shell of the nucleus accumbens at doses known to sustain intravenous drug self-administration.
Resumo:
Ultra-low picomolar concentrations of the opioid antagonists naloxone (NLX) and naltrexone (NTX) have remarkably potent antagonist actions on excitatory opioid receptor functions in mouse dorsal root ganglion (DRG) neurons, whereas higher nanomolar concentrations antagonize excitatory and inhibitory opioid functions. Pretreatment of naive nociceptive types of DRG neurons with picomolar concentrations of either antagonist blocks excitatory prolongation of the Ca(2+)-dependent component of the action potential duration (APD) elicited by picomolar-nanomolar morphine and unmasks inhibitory APD shortening. The present study provides a cellular mechanism to account for previous reports that low doses of NLX and NTX paradoxically enhance, instead of attenuate, the analgesic effects of morphine and other opioid agonists. Furthermore, chronic cotreatment of DRG neurons with micromolar morphine plus picomolar NLX or NTX prevents the development of (i) tolerance to the inhibitory APD-shortening effects of high concentrations of morphine and (ii) supersensitivity to the excitatory APD-prolonging effects of nanomolar NLX as well as of ultra-low (femtomolar-picomolar) concentrations of morphine and other opioid agonists. These in vitro studies suggested that ultra-low doses of NLX or NTX that selectively block the excitatory effects of morphine may not only enhance the analgesic potency of morphine and other bimodally acting opioid agonists but also markedly attenuate their dependence liability. Subsequent correlative studies have now demonstrated that cotreatment of mice with morphine plus ultra-low-dose NTX does, in fact, enhance the antinociceptive potency of morphine in tail-flick assays and attenuate development of withdrawal symptoms in chronic, as well as acute, physical dependence assays.
Resumo:
Molecular imprinting of morphine and the endogenous neuropeptide [Leu5]enkephalin (Leu-enkephalin) in methacrylic acid-ethylene glycol dimethacrylate copolymers is described. Such molecular imprints possess the capacity to mimic the binding activity of opioid receptors. The recognition properties of the resultant imprints were analyzed by radioactive ligand binding analysis. We demonstrate that imprinted polymers also show high binding affinity and selectivity in aqueous buffers. This is a major breakthrough for molecular imprinting technology, since the binding reaction occurs under conditions relevant to biological systems. The antimorphine imprints showed high binding affinity for morphine, with Kd values as low as 10(-7) M, and levels of selectivity similar to those of antibodies. Preparation of imprints against Leu-enkephalin was greatly facilitated by the use of the anilide derivative rather than the free peptide as the print molecule, due to improved solubility in the polymerization mixture. Free Leu-enkephalin was efficiently recognized by this polymer (Kd values as low as 10(-7) M were observed). Four tetra- and pentapeptides, with unrelated amino acid sequences, were not bound. The imprints showed only weak affinity for two D-amino acid-containing analogues of Leu-enkephalin. Enantioselective recognition of the L-enantiomer of phenylalanylglycine anilide, a truncated analogue of the N-terminal end of enkephalin, was observed.
Resumo:
Mode of access: Internet.
Resumo:
Bibliography: 165-171.
Resumo:
Mode of access: Internet.
Resumo:
Errata at end.
Resumo:
Thesis (doctoral)--
Resumo:
Morphine-6beta-D-glucuronide (M6G) is an analgesically active metabolite of morphine, accounting for approximate to10% of the morphine dose when administered by systemic routes to humans. Although M6G is more hydrophilic than morphine, it crosses the blood-brain barrier, albeit relatively slowly. For this reason, it is generally thought that, after chronic dosing, M6G contributes significantly to the analgesic effects of systemically administered morphine. Owing to its polar nature, M6G is cleared from the systemic circulation primarily via renal elimination. As M6G accumulates in patients with renal impairment, there is an increased risk of M6G-induced respiratory depression in renal failure patients who are being dosed chronically with systemic morphine. Consistent with its analgesic and respiratory depressant properties, M6G binds to the p-opioid receptor in a naloxone-reversible manner. Although the affinity of M6G for the mu-opioid receptor is similar to or slightly less than that of morphine, preclinical studies in rodents show that M6G is one to two orders of magnitude more potent than morphine when administered by central routes. This major discrepancy between the markedly higher intrinsic antinociceptive potency of M6G relative to morphine, despite their similar p-opioid receptor binding affinities, is difficult to reconcile. It has been proposed that M6G mediates its pain-relieving effects through a novel 'M6G opioid receptor', while others have argued that M6G may have higher efficacy than morphine for transduction of intracellular events. When administered by parenteral routes to rodents, M6G's antinociceptive potency is no more than twofold higher than morphine. In humans, the analgesic efficacy and respiratory depressant potency of M6G relative to morphine have been assessed in a number of short-term studies involving the intrathecal or intravenous routes of administration. For example, in hip replacement patients, intrathecal M6G provided excellent postoperative analgesia but the occurrence of late respiratory depression in 10% of these patients raised serious concern about safety. In postoperative patients, intravenous M6G administered by means of patient-controlled analgesia (PCA), or bolus plus PCA, produced no analgesia in one study and limited analgesia in another. Similarly, there was a lack of significant analgesia in healthy volunteers who received intravenous M6G for the alleviation of experimental pain (carbon dioxide applied to the nasal mucosa). In contrast, satisfactory analgesia was produced by bolus doses of intravenous M6G administered to patients with cancer pain, and to healthy volunteers with experimentally-induced ischaemic, electrical or thermal (ice water) pain. Studies to date in healthy volunteers suggest that intravenous M6G may be a less potent respiratory depressant and have a lower propensity for producing nausea and vomiting than morphine. However, it is unclear whether equi-analgesic doses of M6G and morphine were compared. Clearly, more extensive short-term trials, together with studies involving chronic M6G administration, are necessary before the potential clinical utility of M6G as an analgesic drug in its own right can be determined.
Resumo:
Indirect evidence indicates that morphine-3-glucuronide (M3G) may contribute significantly to the neuro-excitatory side effects (myoclonus and allodynia) of large-dose systemic morphine. To gain insight into the mechanism underlying M3G' s excitatory behaviors, We used fluo-3 fluorescence digital imaging techniques to assess the acute effects of M3G (5-500 muM) on the cytosolic calcium concentration ([Ca2+](CYT)) in cultured embryonic hippocampal neurones. Acute (3 min) exposure of neurones to M3G evoked [Ca2+](CYT) transients that were typically either (a) transient oscillatory responses characterized by a rapid increase in [Ca2+](CYT) oscillation amplitude that was sustained for at least similar to30 s or (b) a sustained increase in [Ca2+](CYT) that slowly recovered to baseline. Naloxone-pretreatment decreased the proportion of M3G-responsive neurones by 10%-25%, implicating a predominantly non-opioidergic mechanism. Although the naloxone-insensitive M3G-induced increases in [Ca2+](CYT) were completely blocked by N-methyl-D-aspartic acid (NMDA) antagonists and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (alphaamino-3-hydroxy-5-methyl-4-isoxazolepropiordc acid/ kainate antagonist), CNQX did not block the large increase in [Ca2+](CYT) evoked by NMDA (as expected), confirming that N13G indirectly activates the NMDA receptor. Additionally, tetrodotoxin (Na+ channel blocker), baclofen (gamma-aminobutyric acid, agonist), MVIIC (P/Q-type calcium channel blocker), and nifedipine (L-type calcium channel blocker) all abolished M3G-induced increases in [Ca2+](CYT), suggesting that M3G may produce its neuro-excitatory effects by modulating neurotransmitter release. However, additional characterization is required.
Resumo:
The Mechanism Underlying the development of tolerance to morphine, is still incompletely understood. Morphine binds to opioid receptors, Which in turn activates downstream second messenger cascades through heterotrimeric guanine nucleotide binding proteins (G proteins). In this paper, we show that G(z), a member of the inhibitory G protein family, plays an important role in mediating the analgesic and lethality effects of morphine after tolerance development. We blocked signaling through the G(z) second messenger cascade by genetic ablation of the alpha subunit of the G protein in mice. The Galpha(z) knockout Mouse develops significantly increased tolerance to morphine. which depends oil Galpha(z), gene dosage. Further experiments demonstrate that the enhanced morphine tolerance is not caused by pharmacokinetic and behavioural learning mechanisms. The results suggest that G(z) signaling pathways are involved ill transducing the analgesic and lethality effects of morphine following chronic morphine treatment. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Morphine withdrawal is characterized by physical symptoms and a negative affective state. The 41 amino acid polypeptide corticotropin-releasing, hormone (CRH) is hypothesized to mediate, in part, both the negative affective state and the physical withdrawal syndrome. Here, by means of dual-immunohistochemical methodology, we examined the co-expression of the c-Fos protein and CRH following naloxone-precipitated morphine withdrawal. Rats were treated with slow-release morphine 50 mg/kg (subcutaneous, s.c.) or vehicle every 48 It for 5 days, then withdrawn with naloxone 5 mg/kg (s.c.) or saline 48 h after the final morphine injection. Two hours after withdrawal rats were perfused transcardially and their brains were removed and processed for immunohistochemistry. We found that naloxone-precipitated withdrawal of morphine-dependent rats increased c-Fos immunoreactivity (IR) in CRH positive neurons in the paraventricular hypothalamus. Withdrawal of morphine-dependent rats also increased c-Fos-IR in the central amygdala and bed nucleus of the stria terminalis. however these were in CRH negative neurons. (C) 2004 Published by Elsevier Ireland Ltd.
Resumo:
Aims Previous isobolographic analysis revealed that coadministration of morphine and oxycodone produces synergistic antinociception in laboratory rodents. As both opioids can produce ventilatory depression, this study was designed to determine whether their ventilatory effects were synergistic when coadministered to healthy human subjects. Methods A placebo-controlled, randomized, crossover study was performed in 12 male volunteers. Ventilatory responses to hypoxaemia and hypercapnia were determined from 1-h intravenous infusions of saline ('placebo'), 15 mg morphine sulphate (M), 15 mg oxycodone hydrochloride (O), and their combination in the dose ratios of 1 : 2, 1 : 1, 2 : 1. Drug and metabolite concentrations in serial peripheral venous blood samples were measured by high-performance liquid chromatography-MS/MS. Results 'Placebo' treatment was without significant ventilatory effects. There were no systematic differences between active drug treatments on either the slopes or intercepts of the hypoxaemic and hypercapnia ventilation responses. During drug treatment, the mean minute ventilation at PETCO2 = 55 mmHg (V-E55) decreased to 74% of the subjects' before treatment values (95% confidence interval 62, 87), 68% (57, 80), 69% (59, 79), 68% (63, 73), and 61% (52, 69) for M15, M10/O5, M7.5/O7.5, M5/O10 and O15, respectively. Recovery was more prolonged with increasing oxycodone doses, corresponding to its greater potency and lower clearance compared with morphine. Conclusions Although adverse ventilatory effects of these drugs were found as expected, no unexpected or disproportionate effects of any of the morphine and oxycodone treatments were found that might impede their use in combination for pain management.